基于图像识别的无人机精准喷雾控制系统的研究
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家自然科学基金(41471351); 华南农业大学校长基金(4500-K14018)


Design of a precision spraying control system with unmanned aerial vehicle based on image recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    【目的】 针对传统的植保无人机喷雾作业时化肥农药浪费大,利用率低,造成环境污染的问题,研制一种基于图像识别的无人机精准喷雾控制系统。【方法】 利用中值滤波算法对田间航拍图像进行去噪,采用分层 K_means硬聚类算法实现对农田航拍图像的分割,提取非作物区域的颜色、纹理特征空间的22个特征参数,设计支持向量机分类器进行分类识别。根据优选的17个特征参数,利用以径向基函数作为核函数的支持向量机对非作物区域图像进行识别,并根据识别结果控制喷头,实现精准喷雾。【结果】 测试样本的识别率可达为76.56%,在无干扰风场情况下,当P为10%时,减施率可达32.7%。【结论】 本系统为农业航空精准喷雾控制技术的应用提供了参考方向和决策支持。

    Abstract:

    【Objective】In order to improve the efficiency and utilization of conventional unmanned aerial vehicle (UAV) spraying in fertilizer and pesticide applications, an variable rate UAV spraying system was developed based on image recognition.【Method】Median filter was applied to the images for denoising. K_means clustering algorithm was then used to segment the UAV images to extract 22 texture features and the color of non-crop region. Support vector machine (SVM) classifier was designed for classification. According to the 17 selected characteristic parameters, the non-crop region was recognized through the SVM classifier with Radial basis function (RBF) as the kernel function. Finally, precision spraying was achieved with controllable nozzles based on the recognition results.【Result】The recognition accuracy reached up to 76.56%. In undisturbed wind farm, the reduction rate reached 32.7% with the threshold P of 10%.【Conclusion】This research can serve as reference guides for application of precise spraying control technology in agricultural aviation.

    参考文献
    相似文献
    引证文献
引用本文

王林惠,甘海明,岳学军,兰玉彬,王健,刘永鑫,凌康杰,岑振钊.基于图像识别的无人机精准喷雾控制系统的研究[J].华南农业大学学报,2016,37(6):23-30

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2016-07-22
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-11-02