广东主要乡土阔叶树种单木生物量生长模型
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

广东省林业科技专项(2015-02);广东省林业科技创新平台建设项目(2016CXPT03)


Biomass growth models for individual tree of main indigenous broadleaf tree species in Guangdong Province
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 选择广东主要乡土阔叶树种樟树Cinnamomum camphora、木荷Schima superba和枫香Liquidambar formosana为研究对象,建立3个树种的单木生物量生长模型,快速精确计量和监测森林碳汇造林项目的碳储量变化。方法 每个树种按10个径阶均匀分配伐倒90株样木(共270株),以样木的生物量数据为单木生物量,以立木年龄为自变量,分别建立不同起源(天然林和人工林) 3个树种的地上和地下4种方程生物量生长模型,并选择最优模型通过联立方程组总量控制法解决地上各组分(干材、树皮、树枝、树叶)的生长模型相容性问题。结果 天然林和人工林起源条件下,相同树种在同一生物量生长模型形式下生物量增长的上限值和最大增速年龄均有差异。各方程在相同起源和树种条件下所得的生物量上限和拐点年龄差异明显。估计地上生物量时,各树种最优方程形式不同。选择Logistic方程对3个树种地上各组分生物量联立方程组建立相容性生长模型,3个树种干材生物量方程的Radj2为0.560~0.768,平均预估误差(MPE)为3.05%~6.73%;树皮生物量方程的Radj2为0.552~0.866,MPE为2.02%~6.27%;树枝生物量方程的Radj2为0.309~0.706,MPE为3.01%~14.33%;树叶生物量方程的Radj2为0.495~0.767,MPE为4.16%~7.14%。结论 比较4种模型的参数及评价指标可知,地上生物量生长最优模型为Logistic方程,地下生物量生长最优模型为Schumacher方程。地上各组分生物量在立木生长的周期中占地上总生物量的比例随着年龄的增长而不断变化。选择Logistic方程对3个树种地上各组分生物量联立方程组建立相容性生长模型,干材和树皮的生物量方程拟合效果相对于树枝和树叶更好。该模型主要适用于在已知年龄的人工碳汇造林的生物量估计;结合含碳系数,可预估未来一定时期内的碳储量及碳汇量。

    Abstract:

    Objective To calculate quickly and precisely forest carbon sequestration in afforestation projects, we selected major broad-leaved tree species in Guangdong, including Cinnamomum camphora, Schima superba and Liquidambar formosana,and established biomass growth model of individual tree. Method All 270 sample trees with 90 sample trees for each tree species were obtained according to 10 diameter classes during the process of modeling. We established four types of biomass growth models for aboveground and underground biomass of three tree species from different origins (natural forest or planted forest) using age as the independent variable. The compatibility issue among growth models of different aboveground components (stem wood, bark, branch, leaf) was solved using optimized models with a set of simultaneous equations and controlled total biomass.Result Comparing trees from different origins including natural forest and planted forest, the biomass upper limits and ages of the maximum growth rate for the same species under the same biomass model were different. The biomass upper limits and ages of the maximum growth rate indicated by different equations for the same tree species under the same origin were largely different. When estimating the aboveground biomass, the optimal types of equations for different tree species were different. Logistic model was used to establish the compatibility model for the simultaneous equations of biomass for aboveground components of three tree species. The Radj2 values from stem wood biomass equations of three species ranged from 0.560 to 0.768, and MPEs ranged from 3.05% to 6.73%. The Radj2 values from bark biomass equations ranged from 0.552 to 0.866, and the MPEs ranged from 2.02% to 6.27%. The Radj2 values from branch biomass equations ranged from 0.309 to 0.706, and the MPEs ranged from 3.01% to 14.33%. The Radj2 values from leaf biomass equations ranged from 0.495 to 0.767, and the MPEs ranged from 4.16% to 7.14%.Conclusion Comparing the parameters and evaluation indexes of four models, the optimal model of aboveground biomass is the Logistic model and the optimal model of underground biomass is the Schumacher model. The proportion of each aboveground component in total aboveground biomass constantly changes with age during the growth process. The compatibility model for the simultaneous equations of biomass for aboveground components of three tree species is established using Logistic model, and the fitting effects of biomass models for stem wood and bark biomass are better than those for branch and leaf. These biomass models could estimate forest carbon combined with carbon coefficient in planted forest for known age in a certain period.

    参考文献
    相似文献
    引证文献
引用本文

薛春泉,徐期瑚,林丽平,罗勇,赵菡,雷渊才.广东主要乡土阔叶树种单木生物量生长模型[J].华南农业大学学报,2019,40(2):65-75

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2018-06-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-31