基于宽度卷积神经网络的异常农情数据检测方法
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

农业农村部农业国际合作项目(125A0607);安徽省自然科学基金(2008085MF203);安徽省重点研究和开发计划面上攻关项目(201904a06020056);安徽农业大学省级大学生创新创业训练计划项目(S202010364228)


Detection method of abnormal agricultural data based on broad convolution neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 为准确有效地检测农业物联网的感知数据异常,提出了基于宽度卷积神经网络的异常农情数据检测方法,为实现农业物联网数据高质量感知提供参考。方法 首先将标准化后的农情数据编码为极坐标表示,通过滑动窗口机制划分子集,接着将每个子集数据重构为矩阵,最后设计并训练宽度卷积神经网络模型用于异常检测,采用养殖场环境监测数据进行试验。结果 构建的滑动窗口机制可提升异常数据检测能力,缩短检测时间。所设计的宽度卷积神经网络对空气温湿度、土壤温湿度等数据中所存在的异常检测准确率均超过97.5%,优于SVM、RF和CNN模型1.69%、2.76%和3.05%;F1值均在0.985以上,优于SVM、RF和CNN模型0.0093、0.0149和0.0163;且在处理波动性较大的空气、土壤温湿度数据时性能优势更为明显,准确率和F1值分别提高了3.61%~5.98%和0.0188~0.0310。此外,该方法模型检测耗时较短,仅为传统CNN模型的1/6~1/7,并且比SVM和RF模型使用更少的超参数。结论 所建立的数据编码、子集划分和重构方法与宽度卷积神经网络模型对异常农情数据有较好的检测效果。

    Abstract:

    Objective In order to accurately and effectively detect data anomalies from agricultural internet of things, one detection method of abnormal agricultural data based on broad convolution neural network (BCNN) was proposed for providing a reference for achieving high-quality data collection in agricultural internet of things.Method Firstly, the standardized agricultural data were encoded as polar coordinates, and then they were divided into subsets by sliding window mechanism. Subsequently, the data were reconstructed as matrix format. Finally, the BCNN was designed and trained for conducting anomaly detection. The experiment was conducted using the data monitored in the culturing farm environment. Result The sliding window mechanism could improve the detection ability and reduce the time consumption. The accuracy and F1 score of the designed BCNN in the datasets of air temperature and humidity, soil temperature and humidity were more than 97.5% and 0.985 respectively, which on average outperformed SVM, RF and CNN with the increase of 1.69%, 2.76%, 3.05% and 0.009 3, 0.0149, 0.0163, respectively. In particular, while handling the air and soil temperature and humidity data with high fluctuation , the gain in accuracy and F1 score ranged 3.61%–5.98% and 0.018 8–0.031 0, respectively. In addition, the proposed BCNN model has less time consumption of anomaly detection, only 1/6 to 1/7 of classical CNN model, and as well as with less hyperparameter.Conclusion The proposed data preprocessing (data coding, subset partition and reconstruction) method and BCNN model exhibit better performance on abnormal agricultural data.

    参考文献
    相似文献
    引证文献
引用本文

彭旭,饶元,乔焰.基于宽度卷积神经网络的异常农情数据检测方法[J].华南农业大学学报,2022,43(2):113-121

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-03-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-02-21