花叶病大蒜的茎端组织脱毒培养

赵顺庆1 李鹏飞2 范怀忠1 郭碧霞2

捷 要

本文论述了用MS(1962)培养基添加吲哚乙酸(IAA)、细胞激动素(KT)、萘乙酸(NAA)、2,4一二氯苯氧乙酸(2,4一D)、6一苄基嘌呤(BA)等生长调节物质,对开平金山火蒜及广州硬尾骨蒜两品种茎端0.100~0.125mm长的分生组织进行培养,获得了无毒种蒜,并提出了适于此两种大蒜无毒苗培养的培养基配方、生长调节质物的组合和浓度、以及光温条件等一套方案,论证了2,4一D、NAA、BA、光照和温度对愈伤组织诱导、芽分化和球茎形成上的作用,并对大蒜不同组织部位的培养作了初步的探讨。

关键词 大蒜花叶病,大蒜花叶病毒,茎端组织培养,脱毒组织培养

前 言

广东的大蒜(Allium sativum L.)已普遍感染了大蒜花叶病毒^[4]。不易通过田间筛选来获得无毒植株。曾试用了嘌呤类药物及热空气、热水处理等方法进行病苗的病毒钝化试验,都没有成功。

据文献报道,对大蒜茎端0.4~0.9mm的分生组织进行培养,都可以得到部分 脱 毒的大蒜苗^{1.6} 1^{1.71}。但究竟要多大的茎尖组织才能保证取得完全无毒材料,很有必要作进一步探讨。

大蒜组织培养的培养 基 较 常 用 的是MS('62)(Murashige-Skoog, 1962)培养 基[s][[s][[s][[s][[s]][[s]]]],也有使用Nitsch('62)[s][[s][[s]]],也有使用Nitsch('62)[s][[s][[s]]]和White[s][[s]]配方的,但 均以MS('62)的效果为好。生长调节物质一般都是用2,4一二氮 苯氧 乙酸(2,4一D)、6 一苄基嘌呤(BA)、细胞激动素(KT)、吲哚乙酸(IAA)和萘乙酸(NAA)等。 其中2,4一D和BA是起主要调节作用的,而2,4一D对于愈伤组织的诱导增殖及BA对芽分化具有决定性的作用[s][[s][[s]]]。但各文献报道的激素浓度差异很大,这是 否 与品种特性有关,尚需探索。

对大蒜不同组织部位的组织培养,文献已有报道。大蒜的茎端^{[6][6]}、茎盘、幼芽、蒜瓣^[6]和叶片⁸都已成功地诱导出了完整的植株,这对脱毒苗的加速繁殖,具有十分重大的意义。

在1983年11月至1985年4月,我们采用了MS'62基本培养基,分别用不同浓度和组合的激素,对广东的开平金山火蒜和广州硬尾骨蒜两个品种大蒜进行了茎端分生组织的脱毒培养试验,以期获得脱毒大蒜来解决生产上的病害问题,并对不同组合和浓度的激素以及不同光照、温度等条件对大蒜组织培养的影响作初步研究,希望能摸索出一套适于

¹⁻植保系 2-园艺系。赵顺庆现在中华人民共和国江门动植物检疫所工作。 1986年12月4日收稿

这两个品种大岸茎端组织培养的方法及加速脱毒材料快速繁殖的技术。

材料和方法

(一)大蒜品种及其带病毒情况检定

本试验使用广州硬尾骨蒜和开平金山火蒜两个品种作为供试材料。实验前先在每枚供试大蒜上剥出一粒蒜子来进行盆栽,出苗后抽出的新叶均出现褪绿条斑和花叶症状,用汁液浸出法进行电镜检查,均见有病毒粒体,然后将该枚病蒜作为脱毒试毒试验的原始材料。

(二)组织培养的培养基制备

以MS('62)基本培养基为基本配方。在愈伤组织诱导、幼芽分化和出根三个阶段分别添加不同浓度与不同组合的IAA、NAA、2,4—D、KT和BA。

各种药品均用双蒸蒸馏水预先配成一定浓度的母液,于—18℃下保存备用。使用时按常规配法¹¹分别取一定量溶液配成所需浓度的培养基。

本试验用粉状纯化琼脂和 2 × 20cm硬质试管。培养基容量均为 试 管 容量的分。将配制好的培养基置于灭菌锅中,在1.1kg/cm²压力下蒸气消 毒16~18分钟。

(三)材料的消毒与接种

- 1.器具消毒: 所有接种用工具均经过高温、高压蒸气消毒。超净工作台在使用前用75%酒精抹两遍。
- 2. 材料消毒:取已开始萌芽的大蒜,剥出蒜心,用75%酒精表面消毒约15秒钟,再于0.1%升汞液中消毒10分钟,然后用无毒水冲洗2~3遍。
- 3. 材料接种方法:所有操作均在超净工作台无菌条件下进行。在双目解剖镜下,用 医学活动解剖刀将大蒜生长点附近叶原基逐个剥去,切下生长点,再用接种针将生长点接 到试管内培养基上,所切下生长点组织最大为0.123mm,最小为0.082mm,平均约0.1mm。
- 4. 组织培养的环境条件: 试管接种后置于装有荧光管的恒温箱或组织培养空调室内。光照强度为 $1000\sim2000$ Lux,每天光照约10小时。温度在愈伤组织诱导和分化阶段为 $20\pm2\%$,在幼苗生长及出根阶段为 $25\pm2\%$ 。每隔 $30\sim40$ 天换一次新配培养基。
- 5. 不同阶段培养基中的激素组合及浓度(mg/1000ml)。(1)大蒜愈伤组 织诱导阶段:①MS(2,4—D₂+KT₂);②MS(2,4—D₂+BA₂);③MS(2,4—D₂+KT₂+BA₂);④MS(NAA_{0.3}+BA₂);或⑤MS(NAA_{0.5}+BA₃)。(2)幼苗分化阶 段:①MS(NAA_{0.5}+BA₃);②MS(IAA_{0.5}+KT₄);③MS(2,4—D₁+BA₃);④光MS(2,4—D₁+BA₂)或⑤光MS(NAA₁+BA₂)。(3)出根及结鳞茎阶段:①MS(NAA_{0.5});或②MS(不加激素)。

试验结果

(一)消霉效果

本试验共接种10批,198条试管,其污染率都在5%下以,有时成批全无污染。在

不同季节接种的其污染率差异也不大,说明上述消毒方法是成功的。

(二)不同激素浓度及组合对愈伤组织诱导结果

对不同品种大蒜茎端组织分批进行接种,接种后30~40天内进行观察。试验结果,(表1)在所有愈伤组织诱导培养基中,根据观察以MS(2,4—D₂+KT₂)或MS(2,4—D₂+BA₂)两种所诱导出的愈伤组织,生长得较快较好,而且没有芽分化现象。培养基只含BA不含2,4—D的,则愈伤组织生长似乎较慢,极易诱导出幼苗。此结果初步表示2,4—D有促进愈伤组织分化之效,而BA则是芽分化的重要因素。这与文献报道的结果「3」「5」「8」基本一致,但所用素浓度却有差异,可能与品种不同有关。

(三)不同激素配方及浓度对愈伤组织分化的影响

本实验于1984年 4 月 2 日接种。 4 月 28日观察。试验结果(表 2)表明:在供试的所有配方中,MS(NAA_{0•5} + BA₃)最适于幼苗分化,分化最多的一试管达85个芽:而MS(2,4—D₂ + BA₂)则最适于愈伤组织的增殖生长(图版—1)。加有KT和IAA的都会出根或出现畸形组织(图版—2)。

(四)BA及NAA浓度及比例对芽分化的影响

1985年1月23日接种,15天后进行观察。结果(表3)表明: MS(NAA_{0.5}+BA₃) 最适于芽分化,激素浓度过高或过低都会导致产生根状组织。

_	•	
- 1	-	1
		- 1

不同浓度及组合激素对大蒜组织诱导作用

品种	激素组合与浓度 (mg/1000ml)	接种日期	观察日期 (接种后天数)	成活管数 接种管数		诱导结果
广州	2,4-D ₂ + KT ₂			4/25	16.0	
硬屋	2,4-D ₂ +BA ₂	1983年11月17日	41天	4/23	17.4	
硬尾骨蒜	2,4-D ₂ +KT ₁ +BA ₃	1983年11月18日	42天	1/26	3.8	长出白色 愈伤组织
—— 开	2,4-D2+KT1+BA3	1983年12月4日	29天	1/7	14.3	
平	NAA0.5+BA2	1984年11月14日	39天	1/5	20.0	3 个出芽, 1 个
· 金	NAA0.5+BA3	1984年11月26日	27天	4/9	44.4	长愈伤组织
山 火	1-MS(2,4 D1+BA2)			2/19	10.5	长出白色愈伤组织
蒜	$\frac{1}{2}MS(NAA_1+BA_2)$	1984年11月14日	21天	11/68	16.2	2个长芽, 9个 长出绿色组织

(五)畸形芽及根组织的进一步培养

1984年 4 月 8 日用MS (IAA 0.6 + KT₄) 及MS (NAA 0.5 + BA₃) 两种培养基各20 条试管,每种培养基分别接入10块根状组织和10块畸形芽组织进行培养。结果: 经30天仍然是原来的组织增殖,不能诱导分化出愈伤组织或出芽(图 2)。所以,在培养过程中一旦发现畸形芽或只出根的材料即应舍去。

(六)不同大蒜组织部位愈伤组织的诱导

1984年2月23日进行接种, 4月2日观察。试验结果(表4)表明:大蒜的芽、叶片、茎盘、假茎及叶鞘等部位都可作为组织培养的材料。这与前人报道的结果基本相同 3 5 7 。这对已脱毒材料的加速繁殖具有很重要的意义。

(七)光与**愈伤组织**生长及芽分化 的关系

1.光照时间长短对愈伤组织生长的影响: 1984年3月3日进行本试验。在MS(2,4—D₁+BA₂)培养基中,每试管接入一块愈伤组织,连续7天给予三种不同光照时间处理: (1)每天连续光照24小时; (2)每天定时光照10小时; (3)每天连续24小时黑暗。每个处理各40条试管,7天后观察,各试管内愈伤组织生长速度差异不大。说明光照时间长短甚至完全黑暗对大蒜愈伤组织生长影响都不大。

衰 2 不同激素配方对愈伤组织分化的影响

配方及浓度 (mg/1000ml)	1	产生幼 芽管数	1	出现畸形组织
$NAA_{0.5} + BA_3$	12	9	. 0	0
IAA0.5+KT4	12	0	8	3
$2.4-D+BA_2$	10	0	0	0
IAA0.5+BA3	34	13	5	0

表 3 BA及NAA浓度与比例对愈伤组织分化 的影响*

激素组合 (mg/1000ml)	BA与 NAA比 例	生长速率	仅愈伤 组织增 殖管数	出芽 管数	发根 管数
$NAA_{0.2} + BA_1$	5:1	+	2	1	1
$NAA_{0.5} + BA_3$	6 • 1	++	3	1	0
$NAA_1 + BA_3$	3:1	++	2	1	2**

* 试验时间为1985年1月23日至2月9日;品种为开平金山火蒜,每处理供试管数都是4管。

賽 4

不問组织的愈份组织诱导结果,

部位	培养基配方(mg/1000ml)	成活管数/接种管数	诱 导 结 果
茅		2/3	长出苗, 并产生小蒜头叶片膨
叶片	NAA _{0.5} + BA ₃	3/3	大,产生愈伤组织先形成愈伤
茎盘		1/1	组织,后产生芽。
假盆		2/3	
	$2,4-D+BA_{1}$	2/2	
m (11.1.	$2,4-D_2+KT_2+BA_1$	2/2	产生绿色愈伤组织
叶鞘	$NAA_{0.5} + BA_3$	2/1	

^{*} 试验时间为1984年2月23日至4月日2,品种为开平金山火蒜。

2. 光照强度对芽分化的影响: 1984年5月16日进行试验。将48条接有愈伤组织的 MS(NAA_{0.5}+BA₃)试管,放于同一光温箱内。14天后观察,发现只有靠近光管的12条试管有芽分化(光照强度为1000Lux,每天光照8~10小时),其余放置在低于上述光照强度的试管则只增殖而没有芽分化。初步说明芽分化需要一定光照强度。

^{**}其中1管既出芽又出根

(八)温度对愈伤组织生长、芽分化、芽生长及蒜头形成的影响

在1984年11月至1985年4月的整个试验进行期间都发现:大蒜愈伤组织的增殖和分化在室内温度为20~25℃下较为适宜(培养基为MS′62)并且都可形成小蒜头,但在室外温度为28~30℃的夏天愈伤组织则增殖不明显〔培养基为MS(NAA。。。+BA。)〕。可是幼苗(12条)的生长却比室内20~25℃的幼苗(12条)为好。这初步说明大蒜愈伤组织较适于在20~25℃下生长和分化,而幼苗的生长则在28~30℃较好。

在培养室条件下,蒜头形成至成熟约需60~80天(共64枚)。而在室外30℃和阳光直射条件下,在MS′62培养基上的24条蒜苗都在30~45天内产生成熟的小蒜头。(图版一3)这表明幼苗生长、小蒜头形成及成熟均需较强的光照和较高的温度。但其最适合条件尚需进一步试验才能确定。

(九)大蒜幼苗诱导出根试验结果

1984年6月6日在光温室内将106条分化 芽 分 别 接 于 MS′62 配方(83条)和 MS(NAA_{0•2})配方(23条)的试管培养基上,20天后观察,全部分化芽都能顺利地被诱导出根,其出根数量及根长度差异不大(图版—4)。这说明分化芽出根无需激素作用。这与文献报道的结果也完全相同^[6]。

(十)大蒜茎端组织培养的脱毒结果

1984年2月和1985年3月分别用汁液浸出电镜法及琼脂双向扩散血清反应法^[2]检查了全部4条广州硬尾骨蒜及全部4条开平金山火蒜试管的愈伤组织,血清反应均为阴性。病蒜对照则为阳性。电镜观察亦未见病毒粒体。随机将其中一杂广州硬尾骨蒜试管里的脱毒愈伤组织进行了增殖,诱导芽分化。1984年8月至9月先后共收得小蒜头85个,1984年10月20日分别用血清法及免疫电镜法随机检查了其中5个小蒜头,结果均未发现带有病毒,对照则为阳性。因此认为这批材料百分之一百均已脱毒。

1984年12月14日将80个小蒜头进行盆栽(另五个种于大田),1985年1月20日观察,只有58株成活。在1月至4月大蒜生长期内进行观察,发现盆栽的无毒植株较纤弱,但未见有任何病毒症状(图版一5)。植于大田的脱毒苗5株则叶色浓绿,与病蒜比较,植株明显粗壮。4月20日再用琼脂双向扩散血清反应法检查叶片汁液,结果均为阴性。对照为阳性。进一步证明这85个小蒜头都已完全脱去病毒。

讨论和结论

本试验获得完全脱毒的大蒜茎端分生组织,其长度约为0.100~0.125mm,比文献报道的0.4~0.9mm为小¹⁶1171,这是目前所报道中取材最小的。文献说明的0.4~0.9mm 茎端组织有部分仍然带毒,说明这样大的长度不能完全脱毒。

在目前已报道使用的大蒜组织培养基中,MS[']62配方是比较常用的^{[3][5][7][8][9]}。本试验也使用了这种培养基。但有些研究者使用B₅^[6]Nitsch^[9]。或与Nitsch和White^[0]培养基结合也获得了成功。说明大蒜组织对这培养基要求并不严格。但哪一种配方最适合且最经济,不同品种的要求有没有差异,则需进行比较才能确定。

本试验也发现;2,4—D和BA是愈伤组织产生和组织分化阶段中起主导作用的因子。在有2,4—D时就产生愈伤组织;但未见有芽分化;而有BA而无2,4—D时则见有芽分化;这与前人的结果完全一致 3 1 5 1 1 8 。由此可见,在大蒜的组织培养基中加入2,4—D似无必要。

本试验曾就BA和NAA浓度及其比例与芽分化的关系方面 作了 比较 (表3):在BA为 3 mg/1000ml情况下,BA:NAA为 6:1 时,其分化芽数比BA:NAA为 3:1 时为多。曾淑冰¹⁸¹则报道在 2~4 mg/1000ml的范围内,随着浓度增高,出芽提早,生长也加快。由此可见,在大蒜组织分化的激素使用上,其最适浓度与组合方案还有待进一步研究。

本研究结果,开平金山火蒜和广州硬尾骨蒜两种大蒜在愈伤组织的 诱 导 阶 段,用 MS(2,4—D₂+KT₂)和MS(2,4—D₂+BA₂)两种配方的培养基比较适 合。后 者 也 适用于愈伤组织的大量增殖,而MS(NAA_{0.5}+BA₃)对芽分化效果 则 较 好。文献 报 道 [3] [6] [6] [6] 其他大蒜品种的组织培养的最适组合和浓度,与本试验结果差异很大。看来大蒜不同品种对激素浓度的要求似乎是不太严格的。

光照是大蒜芽分化和蒜头形成及成熟的重要影响因子,但目前这方面研究甚少。在本试验中,光照强度为1000~2000Lux,每天光照10小时,就有芽分化。而文献报道^[0]使用970Lux,每天光照16小时同样也有芽分化。这似乎表明。光照强度较低时,可以通过增加光照时间来补充。但其限度如何值得进一步探讨。

本试验还发现,强光对小蒜头形成和成熟均有显著的促进作用,此阶段要求的光照强度要比愈伤组织生长和分化阶段的高得多。这一点在以往文献中尚未见有报道,但究竟要多大光照强度才能完全满足蒜头形成和成熟的要求,目前还未能下结论。

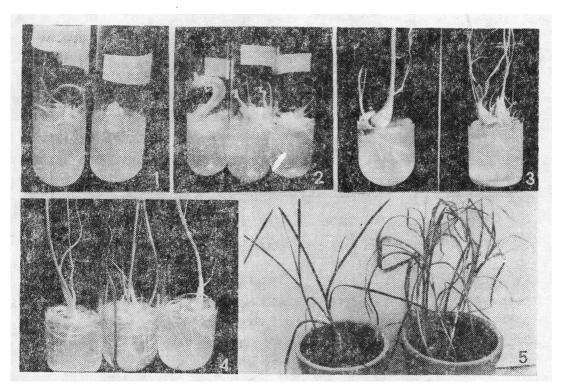
温度对大蒜苗的出根及蒜头形成也有很大影响。据文献报道^[6], 25°C下的蒜 苗 出根比在18~20℃下为快,在26℃和8瓦日光灯下,试管苗在两个月后才能形成小蒜头。而本试验则发现在28~30℃下比在25℃下出根更快,在30℃和阳光直射条件下,只需一个月时间即可产生成熟的小蒜头。这说明以往报道的温度条件仅能保证其较低的要求,而不是其最适温度。进一步研究找出蒜苗生长、蒜头产生及成熟的最适光温条件,减少培养时间和周期,增加脱毒苗的生产数量,在理论上和生产上都具有重要的意义。

引用文献

- 〔1〕王纪方等: 《蔬菜组织培养》39-67,上海科学技术出版社,1983年。
- 〔2〕方中达:《植病研究方法》232-283,农业出版社,1979年。
- 〔8〕杨乃博:大蒜全展叶愈伤组织的诱导和植株再生,《植物生理学通讯》(6)1981:47—48。
- [4] 赵顺庆、范怀忠、高乔婉、唐伟文:广东大蒜花叶病原病毒初步鉴定,《病毒学杂志》(2) 1987:75-86。
- [5] 曾淑冰:大蒜组织培养的研究,《中国蔬菜》(3)1982:26-27。
- [6] Bhojwani, S. S., et al 1982/83. Production of virus—free garlic and field performance of micropropagated plants Scientia Horticulturae 18: 39-43.

- (7) Havranek, P 1972. The virus—free garlic obtained from meristsematic cultures. Ochr. Rostl. (Rraha) 8 (4): 291-293.
- [8] Havranek, P. and Novek, F. J. 1972. The bud for mation in the callus cultures of Allium sativum L. Z. Pflanzenphysol. Bd. 68.S. 308-318.
- [9] Kehr A. E. and Schaeffer, G. W. 1976. Tissue culture and differentiation of garlic. HortScience 11 (4): 422-423.
- [10] Nome, S. F, et al 1981. Obtencion de plantas de ajo (Allium sativum L.) libres. de Virus mediante el cultivo de meristemas apicales. YTON 41(1/2):139-151

PRELIMINARY EXPERIMENT ON VIRUS-FREE GARLIC TISSUE CULTURE


Zhao Shunqing Li Peng-fi Faan Hwei-chung Kuo Pihsia

(South China Agricultural University)

ABSTRACT

Two virus-free garlic cultivar bulbs were obtained after culturing 0.100 ~0.125mm long shoot apices on the basal medium of Murashige and Skoog(1962) supplemented with different combinations and different concentration of IAA, 2,4-D, KT, NAA and BA. The effects of these growth regulators and the influences of light and temperature to the callus growth, organogenesis and bulb formtion had been compared and discussed. a set of culturing conditions and media with growth regulators were recommended.

Key words: Garlic mosaic disease; Garlic Mosaic Virus; Tissue Culture; Virus-free tissue culture

图版 1. 愈伤组织在MS(NAA_{0・3} + BA₃)培养基上发生幼苗分化(左),在MS(2,4—D₁ + BA₂)上只发生增殖(右); 2. 愈伤组织分化的畸形芽; 3. (左)正在生长的试管苗; (右)成熟的试管小蒜头; 4. 蒜苗在试管培养基上的发根情况; (左) MS(NAA_{0・2}); 5. 病苗(右)与脱毒苗(左)比较。