# 稻田蜘蛛对稻纵卷叶螟生命系 统 的 控 制 作 用

庞雄飞 梁广文 尤民生\*

(植保系)

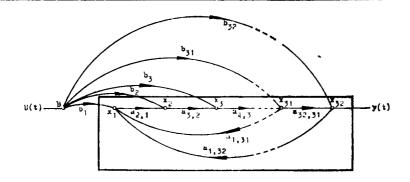
### 提 要

本文以稻纵卷叶螟种群生命系统控制研究作为例子,进一步讨论状态空间表达式的设计及应用问题。应用状态空间分析法,有可能将各类因子对种群数量的控制作用分别进行研究,以及对防治害虫的措施进行综合分析,为制订害虫防治策略提供参改。

关键词 状态空间法: 种群生命系统: 控制指数: 稻纵卷叶螟

前文<sup>14</sup> 曾经讨论适应于昆虫种群生命系统控制研究的状态空间表达式的 设 计。本 文以稻纵卷叶螟种群生命系统控制研究作为例子,对上述问题进行具体补充,并涉及应 用状态空间分析法研究重要因子和防治措施的作用,为现代控制理论应用于害虫种群生 态学提供参考。

# 稻纵卷叶螟种群生命系统控制的状态空间表达式


根据多年来对稻纵卷叶螟第二世代历期的调查,以及26~29°C恒温对生长发育速度影响的试验结果,其发育历期见表1(表中所列的发育历期时间单位为天,其中小于0.5天的不计算在内,0.5或大于0.5天作一天计算,为建模的方便,成虫历期延至死亡为止)。根据发育历期的情况,这里把各虫态及各虫龄再细分为以一天为单位的年龄组,即以32个状态变量作为输入向量和控制向量。

划分为32个状态变量后,稻纵卷叶螟种群生命系统控制的网络模型表达如图1所示。根据图1,建立状态方程(方程1)及输出方程(方程2),组成状态空间表达式。

<sup>\*</sup>尤民生现在福建农学院工作 1987年10月2日收稿

妻 1 超級卷叶螺第二世代发育历期及其种群生命系统的状态变量

|            | 虫 洛     | 5                | 历 期 | 年龄组      | 各虫态的数量                                | 状态变量                                     |
|------------|---------|------------------|-----|----------|---------------------------------------|------------------------------------------|
|            | (X)     | ,                | (天) | (i)      | (Nx)                                  | (Xi)                                     |
| 戼 (E)      |         |                  | 4   | 1<br>2   | Nε                                    | $X_1 = N_E/4$                            |
|            |         |                  | _   |          |                                       | $X_2 = N_F/4$                            |
|            |         |                  |     | 8        |                                       | $X_3 = N_E/4$                            |
|            |         |                  |     | 4        |                                       | $X_4 = N_F/4$                            |
|            | 一龄 (    | T . )            | 2   | 5        | N <sub>L</sub> 1                      | $X_5 = N_{L1}/2$                         |
|            | my V.   | Lij              | -   | 6        | NUI                                   | $X_8 = N_{L1}/2$                         |
|            | 二龄(L:   | I.a.) 8          | 3   | 7        | N 1 2                                 | X <sub>7</sub> = N <sub>12</sub> /8      |
| 幼          |         | _•               |     | 8        | <b>-</b>                              | $X_8 = N_{1.2}/8$                        |
|            |         |                  |     | 9        |                                       | $X_9 = N_{\frac{1}{2}}/8$                |
|            | 三龄()    | L <sub>2</sub> ) | 3   | 10       | N·s                                   | $X_{10} = N_{18}/8$                      |
| ł          |         | _,               |     | 11       | • • •                                 | $X_{11} = N_{18}/8$                      |
|            |         |                  | !   | 12       |                                       | $X_{12} = N_{18}/3$                      |
|            | 四龄()    | (LJ)             | 3   | 13       | N <sub>L</sub>                        | X18 = N14/8                              |
|            |         |                  |     | 14       |                                       | $X_{14} = NL_4/8$                        |
| 虫          |         |                  |     | 15       |                                       | $X_{15} = N_{14}/3$                      |
| <b>X</b>   | 五龄 (Ls) | Ls)              | 4   | 16       | Lis                                   | $X_{10} = N_{15}/4$                      |
|            | •       | _ •              |     | 17       | <u>-</u>                              | $X_{17} = N_{18}/4$                      |
|            |         |                  |     | 18       |                                       | $X_{18} = N_{18}/4$                      |
|            |         |                  |     | 19       | · · · · · · · · · · · · · · · · · · · | $X_{19} = N \cdot _{5}/4$                |
| 蝌          | j (P)   |                  | 7   | 20<br>21 | NP                                    | $X_{20} = N_{f}/7$<br>$X_{21} = N_{1}/7$ |
|            |         |                  |     | . 22     | ,                                     | $X_{22} = N \cdot / 7$                   |
|            |         |                  |     | 23       |                                       | $X_{23} = N_P / 7$                       |
|            |         |                  |     | 24       |                                       | $X_{24} = N_P/7$                         |
|            |         |                  |     | 25       |                                       | $X_{25} = N_P/7$                         |
|            |         |                  |     | 26       | -                                     | $X_{28} = N_P / 7$                       |
| - B. J 445 |         |                  | 27  | NT       | $X_{27} = N \cdot / 6$                |                                          |
| 成虫 (A)     |         |                  | 6   | 28       | N·                                    | $X_{28} = N \land / 6$                   |
|            | •       |                  | 1   | 29       |                                       | $X_{29} = N / 6$                         |
|            |         |                  |     | 30       |                                       | $X_{30} = N_{/} / 6$                     |
|            |         |                  |     | 31       |                                       | $X_{31} = N_A/6$                         |
|            |         |                  |     | 32       |                                       | $X_{32} = N_{A}/6$                       |



方框内为种群生命系统:

 $X_i$  为状态变量;  $a_{j+1}$  和 $a_{i+1}$  为状态转移关系(j=i+1);

B为控制矩阵; bi为X; 相联系的元素; i=1,2, ...., 32

U(t) 为输入向量 (U(t) = X(t);

C为输出矩阵; Y(t)为输出。·

图 1 稻纵卷叶螺种群生命系统控制的网络模型

根据图1,可得下面的状态方程及输出方程:

$$X(t+1) AY(t) + BU(t)$$

$$Y(t) = CX(t)$$

状态方程在U(t) = X(t) 时, 最简式为,

$$X(t+1) = (A+B) X(t)$$

或:

$$\begin{bmatrix}
x_{1} & (t+1) \\
x_{2} & (t+1) \\
x_{3} & (t+1) \\
\vdots \\
x_{31}(t+1) \\
u_{32}(t+1)
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & \cdots & a_{1,31} & a_{1,32} \\
a_{0,1} & 0 & 0 & \cdots & 0 & 0 \\
0 & a_{3,2} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
\vdots \\
x_{31}(t) \\
x_{32}(t)
\end{bmatrix}
\begin{bmatrix}
x_{1}(t) \\
x_{2}(t) \\
x_{31}(t) \\
\vdots \\
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
x_{1}(t) \\
x_{2}(t) \\
x_{31}(t) \\
x_{32}(t)
\end{bmatrix}$$

$$y(t) = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
\vdots \\
x_{31}(t) \\
x_{32}(t)
\end{bmatrix}$$

$$y(t) = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
\vdots \\
x_{31}(t) \\
x_{32}(t)
\end{bmatrix}$$

$$y(t) = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{31}(t) \\
\vdots \\
x_{32}(t)
\end{bmatrix}$$

$$y(t) = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{31}(t) \\
\vdots \\
x_{32}(t)
\end{bmatrix}$$

在方程(1)中,如计算成虫期的死亡, (bs1)为该期存活率。

在状态空间表达式中,系统矩阵是以存活率( $a_1$ ,i)及生殖力( $a_1$ ,i)为基础组成的 $32 \times 32$ 方阵。其中假设各虫期于最后的年龄组才出现死亡。例如卵期 4 天,划分为4个状态,状态 $a_2$ ,i, $a_3$ ,i, $a_4$ ,i, $a_5$ , $a_4$ , $a_5$ =0.4389(这样假设是比较简化的,也可以按存活的实际分布进行设计处理)。成虫期 6 天,第 3 天开始产卵,假设各天的产卵量是均匀分布的。由此可以得出表 2 的系统矩阵各元素的数根(表 2)。

|    |     | 2 76         | 以卷叶螺1977- | -1983年第二世代平均            | 生命表                | (广东、     | 阳江、海陵)                                                                                           |
|----|-----|--------------|-----------|-------------------------|--------------------|----------|--------------------------------------------------------------------------------------------------|
| 虫  | 态   | 虫期           | 死亡因子      | 各死亡因子引起的                |                    | 年龄组      | 各年龄组存活率或                                                                                         |
|    |     | (天)          | (dxF)     | 存活率或产卵量                 | 或产卵量。              | (序号)     | 产卵量(粒/头)                                                                                         |
|    |     | .,,,,        |           | (Sa)                    | (Sx)               | (i)      | (a <sub>j</sub> ,i,a <sub>1</sub> ,i)                                                            |
| ij | þ   | 4            | 抛食        | $S_1 = 0.5010$          | $S_E = 0.4389$     | 1        | a <sub>2,1</sub> = 1                                                                             |
|    |     |              | 寄生        | $S_2 = 0.9536$          |                    | 2        | a <sub>3,2</sub> = 1                                                                             |
|    |     |              | 不解        | $S_3 = 0.9186$          |                    | 3        | B4,3 = 1                                                                                         |
|    |     |              |           |                         |                    | 4        | $a_{5,4} = 0.4389$                                                                               |
|    | _   | 2            | 捕食及其他     | S <sub>4</sub> = 0,3038 | $S_1 = 0.2746$     | 5        | a <sub>6</sub> , <sub>5</sub> = 1                                                                |
|    | 龄   | 4            | 寄生        | $S_5 = 0.9040$          | -                  | 6        | a <sub>6</sub> , <sub>7</sub> = 0.2746                                                           |
|    | =   | 3            | 捕食及其他     | $S_6 = 0.4134$          | $S_{L2} = 0.3373$  | 7        | a <sub>8</sub> ,,=1                                                                              |
|    | 齡   | "            | 寄生        | $S_7 = 0.8158$          |                    | 8        | a,, 8 = 1                                                                                        |
| 幼  | m < |              |           |                         |                    | 9        | $a_{10,9} = 0.3373$                                                                              |
|    | 三   | 8            | 捕食及其他     | S <sub>8</sub> = 0.5594 | $S_{Ls} = 0.4590$  | 10       | a <sub>11,10</sub> = 1                                                                           |
|    | 齡   | 0            | 寄生        | $S_9 = 0.8234$          |                    | 11       | a <sub>12,11</sub> = 1                                                                           |
|    | BI  | <u> </u><br> | 亡病        | $S_{10} = 0.9965$       |                    | 12       | a <sub>13</sub> , <sub>12</sub> = 0.4590                                                         |
|    | 四四  | 8            | 捕食及其他     | $S_{11} = 0.4853$       | $S_{L4} = 0.3477$  | 13       | a <sub>14,18</sub> = 1                                                                           |
|    | 龄   | •            | 寄生        | $S_{12} = 0.7165$       |                    | 14       | 815,14 = 1                                                                                       |
| 虫  | 107 |              |           |                         | ·                  | 15       | A16.16 = 0.3477                                                                                  |
| _  | 五   | 4            | 捕食及其他     | $S_{13} = 0.4749$       | $S_{L b} = 0.3691$ | 16       | a <sub>17</sub> , <sub>16</sub> = 1                                                              |
|    | 齡   |              | 寄生        | $S_{14} = 0.7948$       |                    | 17       | A18,17 = 1                                                                                       |
|    |     | İ            | 病 亡       | $S_{15} = 0.9779$       |                    | 18       | a <sub>19,18</sub> = 1                                                                           |
|    |     |              |           |                         |                    | 19       | $a_{20,19} = 0.3691$                                                                             |
|    |     |              | 捕食及其他     | S1 a = 0.6306           | Sp = 0.4429        | 20       | a21,20 = 1                                                                                       |
| !  | 輔   | 7            | 寄生        | $S_{17} = 0.7573$       |                    | 21       | a <sub>22.21</sub> = 1                                                                           |
|    |     |              | 病亡        | $S_{18} = 0.9275$       |                    | 22       | A23,22 = 1                                                                                       |
|    |     |              |           |                         |                    | 23       | a24,23 = 1                                                                                       |
|    |     |              |           |                         |                    | 24       | A25,24 = [                                                                                       |
|    |     |              |           |                         |                    | 25       | A24,25 = 1                                                                                       |
|    |     | <u> </u>     | <br>      | ED - D - 24             | 42                 | 26<br>27 | $\begin{array}{c c} & \mathbf{A}_{27,26} = 0.4429 \\ \hline & \mathbf{A}_{1,27} = 0 \end{array}$ |
| 成  | 虫   | 6            | 产卵量       | FP <sub>1</sub> P雌=24   | 44                 | 28       | $a_{1,27} = 0$ $a_{1,28} = 0$                                                                    |
| ·  |     |              | 粒/头       | ļ.                      |                    | 29       | $a_{1,29} = 42/4$                                                                                |
|    |     | t            |           |                         |                    | 30       | $a_{1,2} = 42/4$                                                                                 |
|    |     | i .          |           | ļ                       |                    | 31       | $a_{1,31} = 42/4$                                                                                |
|    |     | į            |           | 1                       |                    | 32       | $a_{1,31} = 42/4$                                                                                |
|    |     | 1            | 1 !       |                         |                    | J.       | 141,81 744,4                                                                                     |

控制矩阵在这里设计为与系统矩阵同样维数的矩阵,即32×32方阵。控制 矩阵B的元素b,按照研究的目标进行设计。这样的设计形式将便于进行下面的分析。

# 稻田蜘蛛对稻纵卷叶螟种群生命 系统的控制作用分析

庞雄飞 1 、庞雄飞等 2 1 8 1 曾经提出和讨论了重要因子的分析方法,以表达各类因子对种群数量发表趋势的控制作用程度。其控制作用以 $M_{:,i}$  值( $M_{:,i}$  =  $\frac{1}{S_i}$  )表示。 $M_{:,i}$  值的含义为。如果排除组份S 所引起的死亡,即 $S_i$  = 1,下一世代的种群趋势指数 $I_{:,i}$  将比原来 I 增长 $M_{:,i}$  倍。在这里,我们把 $M_{:,i}$  值,即存活率的倒数。称为种群数量的发展趋势的控制指数,简称为控制指数。据稻纵卷叶 螟1977—1983年第二世代平均生命表各致死因子引起的存活率计算,其控制指数见表 3。

|     |                    | AND THE REAL PROPERTY AND ADDRESS OF THE REAL PROPERTY OF THE PROPERTY OF TH |  |
|-----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 表 8 | 香機以表叶葉1977—1983第二· | 代平均生命衰计算的控制指數 (Msi) *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

| 虫  | 期           | 致 死 四 子 | 各 期 存 活 率<br>(S <sub>1</sub> ) | 控制指数<br>(M(si)=1<br>Si |
|----|-------------|---------|--------------------------------|------------------------|
| ВЬ |             | 捕食      | 0.5010                         | 1,996                  |
|    |             | 寄生      | 0.9536                         | 1.049                  |
|    |             | 不解      | 9.9186                         | 1.089                  |
|    | 龄           | 捕食及其他   | 0,3038                         | 3,292                  |
|    | ~1          | 寄生      | 0.9040                         | 1.106                  |
| 幼  | 二龄          | 捕食及其他   | 0.4134                         | 2.419                  |
|    | — a∢        | 寄生      | 0.8158                         | 1,226                  |
|    | 三 龄         | 捕食及其他   | 0.5594                         | 1.788                  |
|    | MY          | 寄生      | 0.8234                         | 1.214                  |
|    |             | 病亡      | 0.9965                         | 1.004                  |
|    | 四龄          | 捕食及其他   | 0.4853                         | 2,061                  |
|    | •~i pa-{    | 寄生      | 0.7165                         | 1.369                  |
| 虫  | 五 龄         | 捕食及其他   | 0.4749                         | 2.106                  |
|    | <b>⊏</b> B₹ | 寄 生     | 0.7948                         | 1,258                  |
|    |             | 病亡      | 0.9779                         | 1.023                  |
| 蛹  |             | 捕 食     | 0.6306                         | 1.586                  |
|    |             | 寄生      | 0.7573                         | 1.320                  |
|    | •           | 病亡      | 0.9275                         | 1.078                  |

<sup>#</sup>成虫期的各项不参加分析; 资料来源于表2。

据表 3 的控制指数分析,一龄幼虫的"捕食及其他"因子的控制作用最大,其次为二龄、五龄、四龄期的"捕食及其他",三龄幼虫期的"捕食及其他"因子所起的作用也比较明显。如果把全部幼虫期的"捕食及其他"因子总合计算,则其控制指数 $\mathbf{M}_{[1}$ , $p_{]}$ 将为。

$$M_{[L \bullet P]} = (3.292) (2.419) (1.788) (2.061) (2.160)$$
  
= 63.386

"捕食及其他"因子包括自然死亡。在该水稻品种抗性级别的试验中,幼虫期的自然死亡为13%,即其存活率为0.87。捕食性天敌的作用应在其中除去自然死亡的部份。因而捕食性天敌的控制指数M<sub>(Le,ged)</sub>应为为。

$$M_{[L\bullet p,red]} = (63.386) (0.87) = 55.146$$

即:如果没有捕食性天敌,其种群数量发展趋势指数将为原来的55。146倍。由此看来,捕食性天敌对稻纵卷叶螟的种群数量的控制作用相当重要的

据多年的调查,隐翅虫、长颈步甲、青步甲等天敌昆虫占全部捕食性 天 敌 总 数的 10%左右,且在水稻本田生长期内数量比较稳定,蜘蛛的数量占 全 部 天 敌个体总数的 90%左右,其数量却自水稻插植后随着时间的推移而继续增长。因此,研究蜘蛛对稻纵卷叶螟种群生命系统的控制作用,作为控制矩阵设计的实例,将会引起共同的兴趣。

庞雄飞、梁广文<sup>[3]</sup>曾在多年调查的基础上建立了稻田蜘蛛密度d;随时间T;(天)的自然增长曲线方程如下;

$$f(d) = \frac{90}{1 + \exp(1.85 - 0.11T)}$$

在调查中,如果得出一龄幼虫期开始时的蜘蛛密度 $d_{4}$ ,即可输入计算当时的 $T_{4}$ 值;其他 $T_{1}$ 值则可以按虫期推算。同时,也建立了各龄幼虫期的存活率与蜘蛛密度关系的亚模型。其中一、二、三、四、五龄幼虫期存活率与蜘蛛密度的关系分别以 $f(s_{4})$ , $f(s_{6})$ , $f(s_{11})$ , $f(s_{13})$ 表示,其中 $S_{1}$ 的标号与表 2 的相同。亚模型的参数根据近年的资本科及检验结果作了必要的校正。各龄幼虫期存活率与蜘蛛密度关系的亚模型分列于下。

 $f(s_4) = 12.8071(d_4)^{-1} \cdot 1688 = 0.5083 - 0.0081d_4$ 

$$f(s_8) = 0.6518 - \frac{0.7290}{1 + \exp(1.85 - 0.11T_8)} = 0.6518 - 0.0081d_8$$

$$f(s_8) = 0.8534 - \frac{0.7290}{1 + \exp(1.85 - 0.11T_8)} = 0.8534 - 0.0081d_8$$

$$f(s_{11}) - 0.8385 - \frac{0.7290}{1 + \exp(1.85 - 0.11T_{11})} = 0.8385 - 0.0081d_{11}$$

$$f(s_{13}) - 0.8880 - \frac{0.7290}{1 + \exp(1.85 - 0.11T_{13})} = 0.8880 - 0.0081d_{13}$$

应用上面公式的d,及T,推算如下。

$$f(s_4) = S_4 = 0.3038$$
  $d_4 = 25.246$   
 $f(d_4) = d_4 = 25.246$   $T_4 = 8.255$ 

当d,及T,值巳知,其他T,及d,也可按公式推算,得出如下,结果。

$$T_4 = 8.255$$
,  $d_4 = 25.246$ ;  $T_6 = T_4 + 2 = 10.255$ ,  $d_6 = 29.427$ ;

```
T_8 = T_4 + 5 = 13.225, d_8 = 36.292; T_{11} - T_4 + 8 = 16.255, d_{11} = 43.607; T_{13} - T_4 + 11 = 19.255, d_{13} = 50.995.
```

 $T_i$ 或 $d_i$ 的改变,将会引起 $f(s_i)$ 的改变,从而对种群数量发生影响。因而在 研 究 稻 田蜘蛛对稻纵卷叶螟种群生命系统的控制时,可以应用上面的 $f(s_i)$ 为基 础 建 立控制矩 阵 $B(\mathbf{a}_i)$  。其中 $b_i$ 的设计如下。

$$b_0 = S_0 f(s_4) - S_4 S_5 = 0.9040 f(s_4) - 0.2746$$
 $b_0 = S_7 f(s_6) - S_6 S_7 = 0.8158 f(s_6) - 0.3373$ 
 $b_{12} = s_0 s_{10} f(s_6) - s_8 s_0 s_{10} = 0.8205 f(s_8) - 0.4950$ 
 $b_{15} = s_{12} f(s_{11}) - s_{11} s_{12} = 0.7165 f(s_{11}) - 0.3477$ 
 $b_{10} = s_{14} s_{15} f(s_{15}) - s_{15} s_{14} s_{15} = 0.7772 f(s_{15}) - 0.369$ 
其他b.均为O

由此,可以把表 4 中a ji的量值代入状态方程(方程 1)的系统矩阵A中,把bi的子模型代入该方程的控制矩阵B中,获得稻田蜘蛛对稻纵卷叶螟生命系统控制作用的 状态方程。稻田蜘蛛的数量变化对稻纵卷叶螟生命系统的影响,可以编入程序在电子计算机 内实现。例如,当蜘蛛的数量保持原有状态,即 $d_4 = 25.246$ ,控制矩阵B中的bi(1)全 部为零,即不会引起系统的变化,当蜘蛛的数量仅为原来的一半,即 $d_4 = 12.623$ ,控制矩阵中的bi(2)直接对系统矩阵的aji发生作用,引起相应的组份所表示的存活 率 增加,当蜘蛛的数量为零,控制矩阵中的bi(3)对系统矩阵aji的控制作用更为显著(bi(1),bi(2)。bi(3)的数值见表 4)。

如果把输出方程设计为:

$$Y (t+32) = [1 \ 1 \ 1 \ \cdots \ 1 \ 1] X (t+32)$$

则可得出下一世代(历期32天后)的全部数量。如果把输出方程设计为。

$$Y'(t+32) = [0 \ 0 \ 0 \cdots 1 \cdots 0 \ 0] X(t+32)$$

则可得出下一世代X: (t+32) 的数量。

为了讨论稻田蜘蛛对稻纵卷叶螟种群生命系统的控制作用,据表 4 的材料,可以得出下面的结果。

 $1^{\circ}$ 当蜘蛛的数量不发生变化,即 $d_{4} = 25.246$ 时,经过一个世代,即 历期32天 后,其数量变化为,

 $d_4 = 25.246$ 

$$X_{i}(_{1})$$
 (t + 32) = (0.4389)(0.2746)(0.3373)(0.4593)(0.3477)  
= (0.3691)(0.4429)(42) $X_{i}(t) = 0.0446X_{i}(t)$ 

2°当蜘蛛的数量只有原来的一半,即 $d_4 = 12.623$ 时,经历一个世代后的数量变化为。  $d_4 = 12.623$ 。

$$X_{i}_{2}$$
 (t + 32) = (0.4389) (0.2746 + 0.0925) (0.3373 + 0.0939)  
= (0.4593 + 0.1122) (0.3477 + 0.1056) (0.3691 + 0.1207)  
= (0.4429) (42)  $X_{i}$  (t) = 0.1640  $X_{i}$  (t)

賽4 福田蜘蛛对福纵卷叶蟆种群生命系统控制的系统矩阵和控制矩阵

| jo    | a;, i  | <b>b</b> .                      | $\frac{b_{i}(1)}{(d_{4}=25,246)}$ | $\frac{b_{1}(2)}{(d_{4}=12.623)}$ | $\begin{array}{c} b_i(3) \\ (d_i = 0) \end{array}$ |
|-------|--------|---------------------------------|-----------------------------------|-----------------------------------|----------------------------------------------------|
| 2,1   | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 3,2   | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 4,3   | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 5,4   | 0.4389 | 0                               | 0                                 | 0                                 | 0                                                  |
| 6,5   | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 7,6   | 0.2746 | 0.9040f(34)-0.2746              | 0                                 | 0.0925                            | 0.1849                                             |
| 8,7   | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 9,8   | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 10,9  | 0.3373 | 0.8158f(s <sub>6</sub> )-0.3373 | 0                                 | 0.0939                            | 0.1944                                             |
| 11,10 | 1      | 0                               | 0                                 | o                                 | 0                                                  |
| 12,11 | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 13,12 | 0.4593 | 0.8250f(s <sub>8</sub> )-0.4593 | 0                                 | 0.1122                            | 0.2448                                             |
| 14,13 | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 15,14 | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 16,15 | 0.3477 | 0.7165f(\$11)-0.3477            | 0                                 | 0.1056                            | 0.2531                                             |
| 17,16 | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 18,17 | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 19,18 | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 20,19 | 1      | 0.7772f(\$13)-0.3691            | 0                                 | 0.1207                            | 0.3210                                             |
| 21,22 | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 22,21 | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 23,22 | 1      | 0                               | 0                                 | 0                                 | 0 .                                                |
| 24,23 | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 25,24 | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 26,25 | 1      | 0                               | 0                                 | 0                                 | 0                                                  |
| 27,26 | 0.4429 | 0                               | 0                                 | 0                                 | 0                                                  |
| 1,27  | 0      | 0                               | 0                                 | 0                                 | 0                                                  |
| 1,28  | 0      | 0                               | 0                                 | 0                                 | 0                                                  |
| 1,29  | 42/4   | 0                               | 0                                 | O                                 | 0                                                  |
| 1,30  | 42/4   | 0                               | 0                                 | 0                                 | 0                                                  |
| 1,31  | 42/4   | 0                               | 0                                 | 0                                 | 0                                                  |
| 1,32  | 42/4   | 0                               | 0                                 | 0                                 | 0                                                  |

## 3 °假如没有蜘蛛所起的作用,即d = 0,则;

 $\mathbf{d} = \mathbf{0}$ 

$$X_{i}(s)(t+32) = (0.4389)(0.2746+0.1849)(0.3373+0.1944)$$
  
=  $(0.4593+0.2448)(0.3477+0.2531)(0.3691+0.3210)$   
=  $(0.4429)(42)X_{i}(t) = 0.5823X_{i}(t)$ 

由此可以得出下面的结果。在上面的试验分析中,如果蜘蛛的数量减半,则其控制指数将为0.1640/0.0446-3.677;如果没有蜘蛛的作用,则其控制指数将为0.5823/0.0446=13.056。蜘蛛的数量变化对种群数量发展趋势所起的作用是明显的。如果蜘蛛数量减半,稻纵卷叶蟆下一世代的数量将为原来世代的三倍多,如果没有蜘蛛的作用,则将为原来的十三倍。

这里仅以稻田蜘蛛对稻纵卷叶螟种群生命系统控制作为例子,讨论状态空间表达式的建立问题。在状态空间表达式的状态方程中,正如上述,控制矩阵应根据试验目的进行设计,至于输出矩阵,则可与目标函数联系在一起。例如。如果要求输出为损失率,输出矩阵可以数量与损失的关系进行设计,要求输出为经济损失,则可以数量——损失——经济损失的关系进行设计,使输出与目标函数方程能直接联系起来。

关于状态空间表达式的实际应用,今后将在其他具体害虫的研究中继续补充。

#### 引用文献

- [1] 庞雄飞。广东农业科学,1979; (4):36-40
- [2] 庞雄飞,候任环,梁广文,李哲怀。华南农学院学学报,1981; 2 (4);71-84
- [8] 庞雄飞,梁广文。华南农学院学报,1992;8(2):13-27
- [4] 庞雄飞, 梁广文, 尤民生, 吴伟坚。华南农业大学学报, 1988; 9(2): 1-10

#### CONTROL EFFECTS OF THE SPIDERS ON RICE LEAF ROLLER LIFE SYSTEM

Pang Xiong-fei Liang Guangwen You Minsheng

(Department of Plant Protection)

#### **ABSTRACT**

In this paper the control effects of the spiders on rice leaf roller, Cnaphalocrocis medinalis, were observed as a case studies of population life systems. The state-space method can be used to study the effectiveness of different external agencies influencing a subject population and integrative effects of control methods. It may be important to study the tectics of insect pest control.

Key works, State-space approach; population life systems; Index of population control; Cnapholocrocis medinalis