怀孕与未孕乳牛在九种导联心电图的比较'

梁裕利 罗承浩 梁翰昭

(畜牧系)

獎 要

用XQ—IA型心电图机(中国上海七一器材厂出品)对52头黑白花乳牛(内39头已孕,13头未孕)进行了心电图测定。测定心电图所用的导联共9个,即分别为:三个标准导联,三个加压肢导联和三个单极心前导联。所得结果如次:1。孕牛与未孕牛的心电轴均有左、右偏移现象;2。孕牛心率则未孕牛稍高,但不显著;3。在标准工导联、aVR、aVF三个导联中,孕牛的P波电压比未孕牛者增加,而且在工导联和aVR导联中非常明显(P<0.01);4. aVR、aVF的P波时间,孕牛比未孕牛有较明显的延长(0.01<P<0.05);5. aVR的P—R间期,孕牛比未孕牛也有较明显的延长(0.01<P<0.05);6。单极心前导联V1,孕牛的QRS波和T波的时间缩短甚为明显(P<0.01),而S—T段则有明显增长(0.01<P<0.05)。文中对这些结果作了简要的讨论。

关键词 孕牛; 未孕牛; 导联; 心电图

引言

牛的心电图资料国内报道者极少,有关孕牛的心电图资料更为罕见。国外有有关牛 的心电图资料虽较多,但与孕牛有关者亦不多。且因所用的测定方法不同,结果亦有差 异。

家畜心电图的各项数值,不仅在种属间有所不同,即在同种动物,也因所处的生理 状况而发生变化^[7]。母牛在怀孕期间,引起生理的极大变化,无论是胎畜的生长发育, 怀孕子宫体积和重量增加,腹内压增大,迫使胃肠等消化器官位置改变而向前推移,结果 引起孕牛心脏位置的改变,心脏本身亦因增加工作负担而出现代偿性肥大^[2],这些生理 变化必然相应地反映到心电图。我们曾就孕牛和未孕牛在心电图数值的比较,作了初步 的探讨^[3],本试验是在前段工作基础上作进一步探索。使用九个不同导联测定已孕与未 孕乳牛的心电图,用生物统计方法处理并分析数据,提供乳牛繁殖及有关专业人员参考。

*本文承蒙冯洪辉教授审阅,并提供宝贵意见;文中的有关生物统计方面,陈文广老师负责 处理,谨此致谢。

1987年10月12日收稿

材料和方法

(一) 试验透验

全部试验牛只均用广州市燕塘农场的产乳用健康 黑白花乳牛,孕牛39头,未孕牛13头,共52头。

(二) 仪器和药物

- 1. 心电描记仪: 上海七一器材厂生产的 XQ-IA型心电图机。以机内镉镍电池供电,纸转速度为25毫米/秒,每一小横格一毫米等于0.04秒,每一个纵小格一毫米等于0.1毫米 (mV)。
- 2. 导电糊:按中国人民解放军献医大学内科教研室编的《兽医心电图讲义》介绍的方法配制。

(三) 湯定多職

- 1. 动物准备:在固定架内采取站立姿势进行。地面预先铺上厚胶片,胶片上铺设稻草垫,防止漏电干扰。牛只测定前先作五分钟休息。
- 2. 接上导联。在牛只放电极部位用酒精棉球充份擦拭脱脂后,分别涂抹上述的导电糊,最后绑扎板状电极。双极肢导联有 $I \setminus II \setminus III = C$,单极肢导联 $fa \lor R$, $a \lor L$ 及 $a \lor F$ 三个,此六个导联电极板的安放位置均按传统方法,分别放在左、右肢腕前骨部和左、右肢跗前骨部。此外,尚有单极心前导联三个, V_1 电极放在左胸壁第 $4 \sim 5$ 肋骨间(肘关节的后内侧), V_2 电极放在右胸壁第 $4 \sim 5$ 肋骨间(肘关节的后内侧), V_3 电极放在左胸壁第 $5 \sim 6$ 肋骨间(肘突后缘内侧)。

(四) 心电图测量

- 1. 心率计算是以五个R—R间期的平均值查R—R间期心率推算而得[1]。
- 2. 心电轴的测量是以额面 Q R S 平均向量为准,先计算出导联 I、Ⅲ的 Q R S 波群的代数和,并画在 I、Ⅲ导联轴上,然后将此二点各作一垂线,此二垂线相交之点与六轴系统中心点联线而得。心电轴是否偏移,偏移多少,均采用人医心电图规定方法进行。「¹ '
 - 3. 各波波形、振圈、时限等数值亦按上法计算 11。

试验结果

(一) 心律与心率

全部牛(包括孕牛和未孕牛)都是窦性心律,均匀整齐。未孕 牛 心 率 平均为97.6次/分,变动范围77~115次/分,孕牛平均为98.8次/分,变动范围70~125次/分。孕牛比未孕牛的心率稍高,但不显著。

(二) 心电轴, 额面 R电轴

未孕牛13头中,心电轴不偏者3头,左偏者4头,右偏者6头,各分别占未孕牛煎

数的23.1%, 30.8%和46.1%。

孕牛39头中,心电糖不偏者11头,左偏者12头,右偏者16头,分别各占孕牛总数的28.2%,30.8%和41.0%。

(三)心电器波(各导联波形,见图1)

1. P波及 P-R间期: 未孕牛 P波多园凸。Ⅱ,Ⅲ, aV F和 V₁四个导联的 P波皆为正波, aV R 全为负波, V₃导联则全部平坦。其他导联则全有这三种波或其中的二种。

在各导联中, 正 P波的振幅以a V F导联最高,为0.10mV,负 P波的振幅以a V R 导联最深,为0.08mV。P波时限在各导联中最长者为0.08秒,最短者为0.05秒。P—R 间期,最长者为0.20秒最短者为0.14秒。

孕牛 P波也多为园凸。Ⅱ,Ⅲ和a V F三导联者全是直立,a V R 导联全部倒置,这些都与未孕中相同。Ⅰ,V₁导联正波占多数(在未孕牛则全为正波)。其他导联a V L,V₂和 V₃则三种兼而有之;而a V L,V₂以负波为多,V₃以平坦者最多(在未孕牛则全部平坦)。

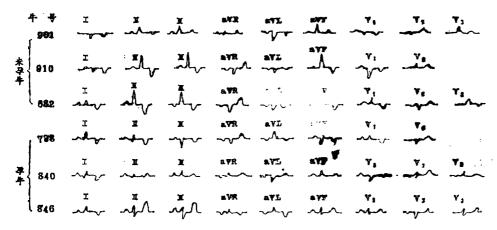


图 1 孕牛与未孕牛各导联的波形

在各导联中,正 P波的振幅以II 导联者最高,为0.13mV,负 P波以a V R 导联 者最深,为0.15mV。 P波时限最长者为0.10秒,最短者为0.04秒。 P—R间期,最长者为0.2秒,最短者为0.13秒。

孕牛与未孕牛各导联 P波参数见表 1、2。

2. QRS波S-T段: 牛的QRS波较为复杂,本试验 曾出现R, qR, QS, RS, rS, Qr, QRS, RS和QR九种波形。未孕牛的一些导联出现上述波形,少者有二种,在另一些导联中则可多至6种,比较集中者以R, qR, QR和rS波为较多。孕牛的一些导联,少者可有5种,另一些导联则可多至8种,以R, qR, QS和rS为集中多见。总的说来,孕牛比未孕牛的QRS波波形更为复杂,各导联的QRS波电压亦大多数比未孕牛者为高。未孕牛QRS波的时限变化在0.05~0.10秒之间,而孕

牛则在0.04~0.10秒。

S-T段: 未孕牛约在0.10~0.18秒, 孕牛则在0.08~0.22秒, 变化较大。同时, 一般孕牛的S-T段较长。

孕牛与未孕牛各导联的QRS波及S-T段的数据,见表1、2。

3. T波, T波可出现直立,倒置,双向及平坦四种形态,未孕牛除 $a \vee R$, V_2 导 联全为正波, $a \vee F$, V_1 和 V_3 具有三种波形外,其他都有正波和负波二种,但以正波为主。孕牛的各导联T波波形较分散,每一导联都会出现二种以上波形。除 $a \vee R$, V_2 导 联以正波为主外,其他导联多以负波为主。

由于 T 波形态有多样,故其电压平均值及变动范围是以该导联出现最多的波向计算。例如未孕牛 II 导联出现85%负 T 波,本试验 以此为代表计算。在各导联中,未孕牛 T 波电压深度可达 -0.40 mV,高度为0.27 mV,T 波时限是 $0.8\sim0.12$ 秒之间,孕牛 T 波电压深度可达到 -0.32 mV,高度0.30 mV ,时限也是变动于 $0.08\sim0.12$ 之间。

4. Q一T段: 未孕牛Q一T度变化在 $0.28\sim0.34$ 之间,而孕牛则在 $0.24\sim0.40$ 之间,可见孕牛的变动较大。

讨 论

- (一)本试验所测得的心率为77~115次/分,比一般 报道60~80次/分 高,也比我们前阶段所测得的63~100次/分的数值稍高^[3],可能是测定季节(5~7月)与牛只兴奋有关。孕牛的心率比未孕牛稍偏高,可能是孕牛生理状况改变及代谢增强,如血钙含量的下降,或甲状腺、肾上腺的激素分泌加强等有关。
- (二) 演崎等曾使用过A—B, 1, 2, 3, 4, 5, 6, 7, 8共九个导联, 三个面包括横断面(相当于本试验的额面)、矢状面和水平面对牛心电图的心电轴测定 ⁶¹。 所用的3,7,8导联分别相当于本试验的 I, II和 II 导联, 但所测得的是水平面 QRS 波 心 电 轴, 而 本试验是前额面 QRS 波心电轴, 故两者所得数值无法作出比较。而且临床上考虑心电轴只限于测量前额面 QRS 波平均电轴, 因为水平面 QRS 波心电轴准确度不高,实用意义不大^[B]。因此, 激崎等测得的水平面 QRS 波电轴的数值, 对本试验的参考意义不大。
- (三)在我们前阶段工作中,曾测得孕牛与未孕牛的心电轴数值均无左偏,而孕牛的心电轴右偏比未孕牛者多 。而本试验在此项数值的测定上,结果与上次不同,即不管孕牛与未孕牛的心电轴均呈多样性,两者均有不偏,左偏和右偏的现象。不偏者占少数,未孕牛为23.1%,孕牛为28.2%,左偏及右偏占较多数,左偏者在未孕牛和孕牛各

占30.8%,右偏者在未孕牛为46.1%,孕牛为41.0%。二次所测得结果不一致,原因可能有: 1.前阶段所测定的牛数过少(总数为20头,内孕牛15头,未孕牛5头),缺乏应有的代表性; 2.根据索波列夫的意见,母马在不同的怀孕阶段(如初期、中期和后期),其心电轴有不同的变化^[4],牛是否亦有同样现象存在?这是值得深入研究和探讨的问题。

此外,在孕牛与未孕牛心电图的比较上,本试验所测得孕牛的 Π ,aVR 和 aVF 的 P 波电压增高,aVR 和 aVF 的 P 波电压增高,aVR 和 aVF 的 P 波时限增宽,aVR 的 P — P 间期增长,这些现象是否孕牛心房血量和内压与未孕牛者有所差异而引起的?至于孕牛的 V_1 导联 的 V_1 导联 的 V_2 不没的时限比 未 孕 牛 短,而在 V_3 一 V_4 是 的 探讨。

引用 文献

- 〔1〕龙怡道等编。实用心电图手册。南昌、江西人民出版社,1982,30-52,310
- 〔2〕南京农学院主编。家畜生理学。北京、农业出版社,1985。321
- [3] 梁翰昭,梁裕利,罗承浩,朱炎然,华南农业大学学报,1986;7(1):63-70
- 〔4〕谢成侠编著。家畜繁殖学原理。南京:江苏科学技术出版社,1983,281
- 〔5〕赵荣瑞编著。心电图的生理学基础。北京人民出版社, 1981, 67
- [6] 臟崎,大井,角野,藤原。宇都宫大学农学部学术报告,1973;8(8),77-86
- [7] Swenson, M. J. Dukes' Physiology of Domestic Animals. 8th ed., 1970, 125-126

COMPARISION OF ECG IN NINE LEADS BETWEEN PREGNANT AND NON-PREGNANT DAIRY COWS

Liang Yuli Luo Chengho Liang Hanzhao

(Department of Animal Husbandry)

ABSTRACT

A total number of 52 Holstein cows, of which 39 pregnants and 13 nonpregnants, were tested for ECG with electrocardiograph (Type XQ-1A)produced by '7,1' Equipment Factory, Shanghai, China). Nine leads used in these experiments were, 8 standard leads, 8 augmented limb leads and 8 unipolar precordial leads. The data from ECG were attained as follows, (1) The electric axis either of pregnant or non-pregnant cows might be right or left deviated, (2) The heart rates of pregnant cows were slightly higher than that of non-pregnant cows but not significant; (3) In the standard II leads, aVR leads and aVF leads, the voltages of P waves were increased in the pregnant cows as compared with nonpregnant cows, especially in the standard II leads and aVR leads (0.01<P<0.05), (4) The duration of P wave in aVR leads and aVF leads were prolonged signi-Ficantly in pregnant cows than that in non-pregnant cows (0.01 < P < 0.05), (5) The duration of P-R periods in aVR were also prolonged significantly (0.01<P <0.05) in pregnant cows; (6) In V of unipolar precordial leads of pregnant cows, the duration of QRS and T waves were shortened significantly when compared with non-pregnant cows (P<0.01), and the S-T segments were elongated very significantly (0.01 < P < 0.05) when compared with non-pregnant cows. A brief discussion was made with these data.

Key words, pregnant cow; non-pregnant cow; lead; electrocardiogram

表 I 未孕牛心电图各导联的数值表 联 I aVR aVL aVF V١ V 2 V_3 振幅 (电压) X土S -0.010 ± 0.010 0 0.045 ± 0.078 0.056 ± 0.021 $\textbf{0.039} \pm \textbf{0.019}$ 0.003 ± 0.019 -0.012 ± 0.016 $\textbf{0.048} \pm \textbf{0.023}$ 0.041 ± 0.011 时 思 | X±S 0.060 ± 0.007 0,065±0.007 0.065 ± 0.010 0.060 ± 0.004 0.064 ± 0.007 0.063 ± 0.006 0.060 ± 0.000 0.060 ± 00.00 0 $X\pm S$ 0.163±0.008 0.160±0.000 0 $\textbf{0.158} \pm \textbf{0.006}$ 0.159 ± 0.008 0.016 ± 0.008 0.155 ± 0.019 0.160±0.000 0.162生0.013 $Q \mid \overline{X} \pm S$ Q QRS波群 0.002±0.004 0.005±0.011 0.023 ± 0.074 0.005 ± 0.008 0.125 ± 0.040 0.178 ± 0.042 0 0 $R \mid_{X \pm S}$ 0,067±0.068 0.167 ± 0.213 0.192±0.213 0.045 ± 0.046 0.077 ± 0.087 0.136 ± 0.176 0.020 ± 0.045 0.060 ± 0.060 0.137 ± 0.076 S $\ddot{X} \pm S$ 0.021 ± 0.057 0.013±0.040 0.021 ± 0.058 0.008 ± 0.028 0.012 ± 0.040 0.083 ± 0.094 0.015 ± 0.035 0.048 ± 0.046 $QS \mid X \pm S$ 0.010 ± 0.025 0.062 ± 0.110 0.196 ± 0.168 0.033 ± 0.060 0.010±0.069 0.050 ± 0.899 0.053 ± 0.093 0.036 ± 0.068 0.058 ± 0.930 时限 X±S 0.068 ± 0.010 0.069 ± 0.016 0.067 ± 0.009 0.068 ± 0.013 0.672 ± 0.012 0.086 ± 0.015 0.075 ± 0.015 $\textbf{0.076} \pm \textbf{0.017}$ 0.065 ± 0.015 S-T 段 $\overline{X} \pm S$ $\textbf{0.132} \pm \textbf{0.017}$ $\mathbf{0.120} \pm \mathbf{0.016}$ 0.130 ± 0.011 0.014 ± 0.016 0.137 ± 0.020 0.131 ± 0.014 0.136 ± 0.017 0.138 ± 0.018 0.136 ± 0.021 振 幅 -0.150 ± 0.091 -0.112 ± 0.040 0.141 ± 0.063 0 0.105 ± 0.044 -0.178 ± 0.102 -0.146 ± 0.924 0.109 ± 0.075 -0.071±0.031 Т. $X \pm S$ (电压) 时间 $\overline{X} \pm S$ 0.150 ± 0.010 0.108 ± 0.010 0.103 ± 0.006 0.015 ± 0.011 0.107 ± 0.011 0.105±0.011 0.109 ± 0.011 0.108 ± 0.010 0.103 ± 0.015 Q一T 时 限 $\bar{X} \pm S$ 0.303 ± 0.002 0.301 ± 0.002 0.311±0.019 6.311 ± 0.018 0.314 ± 0.015 0.313 ± 0.015 0.327 ± 0.012 0.309 ± 0.020 0.306 ± 0.019

[·] T波电压的X±S值是以该导联出现最多的波向者计算。

•••	表 2		未 孕 牛 心 电 图 各 导 联 的 數 值 表							
Ų.	1	ŧ ¦ I	I	П	a V R	aVL	aVF	V ₁	V ₂	V ₃
•	振幅 X±	S 0.045 ± 0.024	0.081±0.029	0.050±0.022	-0.053 ± 0.025	-0.127 = 0.674	0.066 ± 0.024	0.045±0.080	-0.008±0.010	0.001±0.007
7 炒	市限 工士	S 0.062 ± 0.009	0.069 ± 0.011	0.060 ± 0.069	0.067 ± 0.009	0,061±0,009	0.071±0.010	0.066 ± 0.010	$\textbf{0.013} \pm \textbf{0.010}$	0.060 ± 0.000
−R	$X \pm S$	0.166±0.019	0.167±0.020	0.166±0.020	0.168 ± 0.018	0.165 ± 0.010	0.166±, 017	0.166±0.017	0.158 ± 0.026	0.170±0.014
Q	振 Q X ±	S 0.013±0.045	0.022 ± 0.035	0.043±0.087	0.001±0.066	0.014 ± 0.054	0.000 ± 0.061	0.008 ± 0.034	0	0.004±0.013
		S 0.013 ± 0.093	0.186 ± 0.143	0.152 ± 0.135	0.048 ±0.077	0.082 ± 0.034	0.181-0.181	0.038 ± 0.057	$\textbf{0.050} \pm \textbf{0.054}$	0.105 ± 0.562
Ł.	电 电 形 S X X ±	S 0.123±0.036	0.016 ± 0.051	$\textbf{0.027} \pm \textbf{0.027}$	$\textbf{0.012} \pm \textbf{0.033}$	0.015 ± 0.036	$\textbf{0.017} \pm \textbf{0.001}$	$\textbf{0.023} \pm \textbf{0.059}$	0.047 ± 0.157	0.024 ± 0.048
¥.	Qs X±	S 0.039 ± 0.066	$\textbf{0.025} \pm \textbf{0.079}$	$\textbf{0.038} \pm \textbf{0.081}$	015 ± 0.109	0.000±0.005	0.022±0.035	0.095 ± 0.092	0.052 ± 0.087	0.003±0.016
	财限 X ±	S 0.063 ± 0.013	0.068 ± 0.013	0.056 ± 0.013	0.065±0.013	0.060±0.016	0.028 ± 0.015	0.070±0.117	0.070±0.014	0.068 ± 0.015
-T	$\overline{X} = S$	0.143 ± 1.032	0.142±0.031	0,148±0.029	0.143±1.032	0.145±0.040	0.145±0.079	0.150±0.025	0.148±0.028	0.162±0.023
	振幅 X±	S -0.127 ± 0.059	-0.178±0.063	0.118 ± 0.047	0.137±0.563	-0.097±0.058	-0.160±0.66	-0.094±0.036	0.099±0.042	0
皮	时间工生	S 0.104±0.013	0.102±0.011	0.100±0.014	0.104 ± 0.012	0.099 ± 0.023	0.103±0.014	0.093±0.015	0.097±0.015	0.093±0.014
ーT 限	$X \pm S$	0.311 ± 0.032	0.312±0.032	0.315±0.034	0.311±0.039	0.305±0.064	0.314 ± 0.032	0.313±0.265	0.310±0.044	0.323±0.025

^{*}T波电压的X±S值是以该导出现最多波向者计算