一种小鸡体液免疫应答能力 指示系统的建立

戚丹英 刘福安

(兽医系)

提 要

本研究用兔、山羊、绵羊、黄牛、猪、鹅、鸭的红细胞(RBC)作为抗原,分别免疫小鸡,并用直接微量血球凝集(HA)试验测定鸡所产生的体液免疫应答。选用能刺激产生较高抗体水平的鹅红细胞(GRBC)作为指示系统,在7、14天龄分别接种试验鸡,检测(1)传染性囊病(IBD)病毒及疫苗,(2)马立克氏病(MD)病毒;(3)火鸡疱疹病毒(HVT)疫苗等接种1天龄小鸡后,对鸡体液免疫应答能力的影响。

结果表明,IBD一PBG®®棒株无免疫抑制作用; IBD一野毒株引起严重的免疫 抑制效应; HVT疫苗和MD病毒对 7 天 龄接 种了GRBC的小鸡抗体产生有明显影响。同时对鸡的法氏褒进行组织学检查,取得相应的结果。然而,IBD中和抗体滴度并没有显出这种与法氏囊组织破坏呈正相关的关系。

试验证明本指示系统简便有效,易于推广应用。

关键词 免疫抑制; 血球凝集; 指示系统

引言

在禽病中有几种常见的损害免疫器官,导致免疫功能障碍的疾病,如IBD、MD、 黄曲霉毒素中毒病等。

有关学者在研究免疫抑制方面做了大量工作,而使用较多的体液免疫应答指示系统 是接种新城疫 (ND) 病毒^{[3][9]},测定被检血清的血球凝集抑制 (HI) 抗体 水平。但 由于鸡对ND病毒易感,若鸡已患ND或带有母源抗体,则直接影响检测结果^[8]。

绵羊RBC (SRBC) 也是常用的指示系统之一,它在鸡之间不会相互传染,且形状 均一,可直接用HA试验测定结果。为了避免SRBC出现溶血影响观察,血清需经56℃30分钟灭能,SRBC沉降较慢,要置37℃作用1小时后方能判读结果[4][6][10]。

因禽类对布氏杆菌不易感,故其疫苗也被用作抗原来免疫试验鸡,经试管法血清凝集试验 (SAT) 测定抗体水平^{[8][8]},SAT需经37℃作用18小时才能得到结果。由于布氏杆菌对人体有害,使用时必须十分慎重。

1987年10月23日收稿

在家禽体液免疫研究中,仍未见有关使用禽类异种RBC作为指示系统的报道。

为了能使用简便快捷的微量HA方法来检测体液免疫应答,本试验拟通过对 多 种哺乳动物和禽类RBC进行测定,筛选出一种RBC作为小鸡免疫应答能力的指示系统。

料材和方法

(一) 材料

1 和14天龄雏鸡, 抗原—RBC (兔、山羊、绵羊、黄牛、猪、鹅、鸭) 和布氏杆菌 (猪) 2 号冻干疫苗 (兰州生物药厂), 免疫抑制因子— IBDV (荷兰PBG → 疫苗、广东省家禽研究所分离野毒)、HVT疫苗 (农牧渔业部南京药械厂)和MD分离野毒。

(二) 方法

1. 指示系统的筛选: 27只14天龄雏鸡随机分为9组,每组3只。其中一组不接种抗原,为对照组,另一组接种布氏杆菌疫苗,肌注0.5ml/只(含200亿菌数),其余7组分别皮下接种动物(兔、山羊、绵羊、黄牛、猪、鹅和鸭)50%RBC悬液(0.5ml/只)。

接种抗原后 7 和14天采血,分别用试管 SAT (布氏杆菌) 和 微 量 HA 试验 (RBC) 测定相应抗体滴度,选择抗体水平较高的抗原为初选体液免疫应答能力的指示系统。

- 2. 初选指示系统HA抗体变化曲线测定,用初步选定的GRBC和鸭RBC (DRBC) 各免疫 3 只14天龄雏鸡,然后连续六周每天采血测定HA抗体滴度。
- 3. 免疫应答能力检测: (1) 接种 1 天龄雏鸡: 第 1 组是对照组(C);第 2 组(P) 口服IBD—PBG。8疫苗0.1ml/只;第 3 组(V) 口服IBD—野毒0.1ml/只;第 4 组(H) 皮下接种HVT疫苗0.2ml/只;第 5 组腹腔接种MD血毒0.5ml/只。隔离饲养。(2) GRBC免疫: 于 7 或14天龄对每组中一部分小鸡分两处皮下接种50%GRBC悬液,共 0.5ml。(3) 微量HA试验: 小鸡在接种GRBC后第 3、 7、 10、 14、17和21天 采血, 2 倍系列稀释血清,加等量 0.5%GRBC, 室温感作 30分钟后判读结果。
- 4.组织切片:各组分别在7、14天龄剖杀2只小鸡,取法氏囊固定、切片,用苏木素一伊红(H.E.)染色,观察组织学变化。
- 5. 微量IBD—血清中和(SN)试验: 测定 1 天龄对照组(C)和 接种IBD—PBG, 疫苗(P)、IBD—野毒(V)试验组的IBD母源抗体以及 第10、14、17、21、24和28天龄时的IBD中和抗体水平[1]。
- 6. 标准检验:用方差分析方法检验各试验组与对照组的GRBC—HA抗体滴度差异显著性。

试验结果

(一) 指示系统筛选结果

接种布氏杆菌疫苗 7 天和14天后的SAT抗体滴度均为167(27*38), GRBC 和 DRBC

的抗体同样能达到较高水平 (128~521) 表 1

7 种RBC的HA抗体检测结果

RBC	血清	接种RBC后HA	A滴度 (log ₂)	说 明	
种类 样本		7天	14天	ניי טע	
兔	新鲜灭活	3.0 (溶血) 各孔疑似凝集	3.0 (溶血) 各孔疑似凝集	除溶血,各孔(包括PBS及对 照鸡样本)兔RBC均不沉降。	
山羊	新鲜灭活	4.3 (溶血) 4.3	1.0 (溶血)		
绵羊	新鲜灭活	5.0,(2.0溶血)	1.3, (1.0溶血) 0.7	血清稀释度低时有溶 血现象。	
黄牛	新鲜灭活	2.0 (溶血) 0	1.1 (溶血)	,	
猪	新鲜灭活	3.0 (溶血) 各孔疑似凝集	3.0 (溶血) 各孔疑似凝集	除溶血,各孔(包括PBS及 对照鸡样本)猪RBC均不沉降。	
鹅	新鲜灭活	9.1 8.0	6.8 6.3	无溶血现象 ,滴度较高。	
鸭	新鲜灭活	9.0 9.3	3.2 3.2	无溶血现 象,滴度较高。	

(二)初选指示系统的抗体滴 度变化

GRBC 和 DRBC 的 HA 抗体滴度相近,在接种后7~9天达到峰值。从图1可见小鸡在5 周龄后抗体滴度有回升现象。本试验主要是针对1月龄以内的小鸡,因为其免疫器官受损后对机体免疫能力的建立影响甚大[6],基于这种原因,并考虑在本试验条件下,GRBC取材相对较方便,故选定GRBC 为免疫应答能力的指示系统。

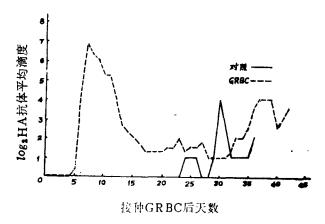


图 1 接种GRBC小鸡及对照鸡的GRBC—HA抗体曲线。

(三) 各组试验鸡对GRBC应答能力的对比分析

- 1. IBD—PBG。8疫苗组早期抗体滴度稍低,继而上升,与对照组差异不显著,提示该疫苗对抗体产生无抑制作用。而IBD—野毒株组的抗体滴度则明显低于对照组,差异极显著,即该野毒株严重影响抗体的生成(表2)。
- 2. HVT疫苗组和MDV组均在7天龄接种GRBC后抗体滴度与对照组差异极显著,它们对早期抗体的产生有一定的抑制作用(表3)。

45 I DOMESTIC (1) STANSMIT (1) HONORED (C) HIGHER											
接种	组	鸡	HA滴度平均值±标准误(log ₂)								
GRBC 天龄	别	数	3 +	7	10	14	17	21			
	P	8	0.13±0.12	4.75 ± 0.67°	6.13±0.48	3.75 ± 0.49	3.50±0.60	3.38 ± 0.42			
7	v	8	0.50 ± 0.38	2.00 ± 0.50°°	2.00 ± 0.63**	2.75 ± 0.69°	2.29 ± 0.84	2.00±0.65**			
	С	4	1.75 ± 1.75	7.00 ± 2.16	6.50 ± 1.32	5.25 ± 1.11	4.25 ± 0.63	4.00 ± 0.82			
	P	8	0.30±0.25	4.25 ± 0.77°	7.00±0.78	6.71±0.68	4.75±0.78				
14	V	6	0.17 ± 0.17	2.00 ± 0.77 **	3.50±1.41**	3.67 ± 1.28°	1.33 ± 0.67°				
	C	8	0	6.63 ± 0.89	7.13 ± 0.67	6.25 ± 0.41	4.38 ± 0.46				

表 2 PBGss在截组(P) 野客株组(V) 和对原组(C) 的GRBC-HA建度

+接种GRBC后天数 *P<0.05, 差异显著 **P<0.01, 差异极显著

接种GRBC 组 鸡		鸡	HA滴度平均值±标准误(log ₂)						
天	龄	别	数	3	7	10	14	17	21
		н	8	1.25±0.84	1.88±0.48	1.88±0.48	1.29±0.64	1.29 ± 0.61	1.14±0.55
7		M	6	0	1.17±0.40	1.17 ± 0.40	1.00 ± 0.58	1.00 ± 0.44	0.86 ± 0.34
		С	4	1.75 ± 1.75	7.00 ± 2.16	6.50 ± 1.32	5.25 ± 1.11	4.25 ± 0.63	4.00±0.82
		Н	8	0.63±0.63	3.75±1.42	5.63 ± 1.31	4.17±1.08	4.17 ± 0.87	
14		M	8	0.38 ± 0.37	4.25 ± 1.19	5.50 ± 1.43	4.80 ± 1.28	4.40 ± 1.12	
		c	8	0.75±0.62	6.88 ± 0.40	7.50±0.71	6.38 ± 0.56	5.00 ± 0.53	

事 8 HVT疫苗組(H)、MDV組(M)和対照組(C)的GRBC-HA適度

(四) 组织切片的显微镜观察

1. 接种IBD—PBG_{•8}疫苗后7天的雏鸡法氏囊髓质部的淋巴细胞数量 增多,皮质与髓质的界线仍可辩认,第14天时部分滤泡的淋巴细胞排列密度仍较大,其余与正常无大差异。

- 2. 接种IBD—野毒株7天后雏鸡法氏囊的滤泡普遍萎缩,淋巴细胞大量减少,滤 饱内形成一些含有液体的囊泡,皮质与髓质的界线完全消失,间质纤维组织增生,第14 天,滤泡依然呈萎缩状,网状细胞增多,囊腔被覆上皮层多见下陷。
- **3** . 接种HVT疫苗后 **7** 天雏鸡法氏囊滤泡中淋巴细胞排列较密集,皮质与髓质分界 消失,第14天时皮质与髓质的界限仍不十分清晰。
- 4. 接种MDV 7 天后雏鸡的法氏囊滤泡萎缩,淋巴细胞显 著减少,网状细胞增生,皮质与髓质分界消失,间质纤维组织增生,第14天淋巴细胞数量有所增加,皮质与髓质的界限尚不十分明显。

(五) IBD-SN试验结果

C、P和V三组小鸡均带有较低水平的IBD母源抗体。用IBD一野毒株接种后的试验组(V)产生的IBD中和抗体滴度高于BD—PBG。组(P),并维持至3周龄以后(图2)。

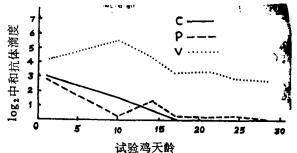


图 2 IBD中和抗体滴度变化曲线

本试验中免疫抑制因子对雏鸡免疫功能的影响归纳如下表 4:

表 4 法氏囊损伤, IBD中和抗体与体液免疫抑制的关系

组别	法氏囊损伤	IBD中和抗体	免疫抑制
IBD-PBG08	轻 度	±	
IBD一野毒	严重	++	++++
HVT	中等程度		++
MDV	比较严重		++
对 照	无		_

讨论

(一) GRBC指示系统的使用评价

为了能在较短时间内取得结果,本试验只注射一次GRBC,故RBC用量不 宜太少。结果表明,每只鸡用 50%GRBC 0.5ml,效果较好,且新鲜血清样本不经灭活,也获得同样测定结果,方法简便。从表 1 可见,用同样浓度的SRBC,只经一次免 疫,抗体滴度未能达到较高水平。以往的研究工作者多使用10%等较低浓度的SRBC,一般需要再次免疫,试验过程较长。

然而,从5周起,雏鸡的灭活及非灭活血清均开始出现非特异性凝集,对照鸡也不例外,滴度变化从0至2⁴不等(参见图1)。据免疫学上对动物血型的研究^[2],认为

其中一种血型抗体(异种天然抗体)是存在于一种动物血清中的对另一种动物红细胞的 天然抗体。天然抗体在没有人工免疫和感染的条件下,除由遗传而先天就 具 有 的 某些 抗体之外,还包括动物后天自然接触某些 抗 原 物 质 (如食物) 所产生的抗体。由此推 测,异种天然抗体是引起这种GRBC非特异性凝 集 的 原 因。由于其出现 是在35天龄以后,而本研究主要是针对 1 月龄以内的小鸡,因此,这种现象对本测定结果没有影响。事实上,异种天然抗体已作为指示系统应用于体液免疫应答能力的研究'"。

试验结果表明,GRBC—HA试验是测定 5 周龄以内小鸡体液免疫 抑 制 效应的一种比较好的指示系统。HA试验作为抗体检测方法,比HI试验或SAT更为 简便快捷,同时避免了使用其它禽病病原作为指示系统时存在相互传染和受到其母源抗体影响的弊病。

(二) 免疫抑制因子对体液免疫效应的影响

小鸡法氏囊早期受损害后,由于B细胞受到侵害,会引起体液免疫抑制。如果损害程度不甚严重,法氏囊经一段时间的再生修复,可使其免疫功能得到恢复。分析本试验结果可见,7天龄接种GRBC的H、M试验组对抗原的反应较弱;而14天龄时接种GRBC、抗体产生的能力已逐步恢复,与对照组差异不显著。

PBG。是毒力相对较弱的IBDV毒株,小鸡1天龄接种后,法氏囊早期有轻微的组织学变化,之后很快修复,GRBC—HA抗体水平接近于对照组,说明试验鸡的免疫功能是基本完善的。相比之下,IBD—野毒株的毒力很强,它严重损害了法氏囊的 滤泡结构,雏鸡的体液免疫抑制效应持续至二周龄以后。

将IBD试验组的微量HA和SN试验检测结果进行比较,发现IBD中和抗体水平与GRBC—HA抗体水平的高低程度并不一致。PBG。弱毒株进入鸡体后受到IBD母源抗体的影响,原来弱的抗原性又进一步削弱,致使小鸡产生IBD中和抗体的水平较低,但对其它抗原(GRBC)应答依然良好,并没有引起严重的免疫抑制。而接种了野毒株的鸡对GRBC的免疫应答较弱,提示小鸡体内低水平的母源抗体未能有效地阻止IBDV强毒产生的体液免疫抑制作用,另一方面,野毒株仍能够刺激机体产生较高水平的IBD中和抗体,表明法氏囊受损虽然对其它抗原反应表现出免疫抑制,但不影响IBD抗体的产生,这与过去的报道一致¹。

因此,IBD免疫效果良好的疫苗,不一定不存在对其它抗原的免疫抑制作用,不导致对其它抗原产生免疫抑制效应的IBD弱毒株,有可能容易受到IBD母源抗体的影响,而对IBDV的应答较弱。因而,用活病毒作IBD免疫时,须对IBD本身的免疫效果和不产生对其它抗原的免疫抑制作用加以兼顾。这就是为什么在实际工作中,要针对小鸡IBD母源抗体水平,选择不同毒力的IBD活病毒疫苗。

HVT (FC—126疫苗株)是长期以来普遍使用于预防MD的疫苗。从本结果看,早期(7天龄)接种了GRBC后,HVT疫苗组(H)产生的HA抗体滴度明显低于对照组(C),法氏囊组织出现一定的变化。除了雏鸡可能后天感染其它疾病等原因外,作者认为还应考虑是否由HVT疫苗生产而带入引起免疫抑制的病原,如禽网状内皮组织增殖病病毒(REV)是疫苗的一种潜在污染物,这有待于今后进一步研究。

引用文献

- [1] 刘福安,陈博文.华南农学院学报,1984; 5 (1):80-87
- [2] 杜念兴主编. 兽医免疫学. 上海科学技术出版社, 1984. 43 (148
- (8) Boulton, S.L., J.W.Dick, and B.L.Hughes, 1982, Avian Dis. 26, 1-6
- (4) Burg, R.W., T.Feldbush, C.A.Morris, and T.A.Maag. 1971. Avian Dis. 15; 662-671
- [5] Edwards, K.R., J.C.Muskett, and D.H. Thornton. 1982. Res. in Vet. Sci. 32. 79-83
- [6] Giambrone, J.J., D.L. Ewert, and C.S. Eidson. 1977. Poultry Sci. 56: 1591-1594
- [7] Giambrone, J.J., J.P.Donahoe, D.L.Dawe, and C.S.Eidson. 1977. Am. J. Vet. Res. 38: 581-583
- [8] Hopkins, I.G., K.R.Edwards, and D.H.Thornton, 1979. Res. in Vet. Sci. 27. 260-261
- (9) Muskett, J.C.et al 1979. Vet. Res. 104: 332-334
- (10) Thaxton, J.P., H.T.Tung, and P.B.Hamilton, 1974. Poultry Sci. 53: 721-725

ESTABLISHMENT OF AN INDICATOR SYSTEM FOR ASSESSMENT OF HUMORAL IMMUNE RESPONSE IN CHICKS

Qi Danying Liu Fuan

(Department of Veterinary Medicine)

ABSTRACT

In the present study, red blood cells from each of the following species, rabbit, goat, sheep, cattle, swine, goose and duck were used as antigen to immunize chicks, and the humoral immune response determined by a direct micro-haemag-glutination test. Goose red blood cells (GRBC) elicited antibodies which gave a clear-cut and strong antibody reaction, and thus was chosen as the indicator system.

Chicks were inoculated with GRBC at 7 and 14 days of age respectively to assess the immunological responsiveness of the birds exposed at the age of one day to (1) infectious bursal disease (IBD) virus and vaccine, (2) Marek's disease (MD) virus, and (8) Herpesvirus of turkey (HVT) vaccine.

The results showed that the IBD-PBG. strain produced no immunosuppression, the IBD-virulent strain led to serious immunodepressive effect. The MD virus and HVT vaccine significantly affected the production of haemagglutinating antibodies in those birds which were injected with GRBC at 7 days of age. parallel histological examination of the bursa Fabricii revealed changes which were in agreement with the above observations. However, the neutralizing antibody titres to IBD virus did not show this correlation.

This study demonstrated that the GRBC indicator system for evaluating humoral immune response in chicks was simple, effective and easy to popularize.

Key words, Immunosuppression; Haemagglutination; Indicator System