一个测定土壤元素生物有效性的新方法

A DESORPTION METHOD FOR ASSESSING SOIL ELEMENT BIOAVAILABILITY

吴启堂 WU Qitang (土化系)

(Department of Soil Science & Agrochemistry)

关键词 水土比,土壤溶液浓度;缓冲能力,可解吸性元素,生物有效性

Key Words Water to soil ratio; Soil soution concentration; Buffer power; Desorbable element, Bioavailability

目前表征土壤元素生物有效性有强度、容量和数量指标。这些指标需分别测定,比较费时。而且数量和容量指标通常用化学试剂浸提法和吸附等温线法,不一定能真正反映土壤的供给能力^[1]。本文旨在找出一种能同时测定这些指标又比较简单的方法。

1 原理和方法

称取一定量风干、过 1 mm 孔径筛的土壤,加蒸馏水使水土比为 1:1、2:1、5:1、10:1,振荡半小时,静置 24 h (在静置期间摇匀 1~2 次),再摇匀过滤,测定滤液中的元素浓度。氮的测定用加 FeSO₄~Zn 粉还原剂的蒸馏法,磷用磷钼蓝比色法;钾用火焰光度法;镉用原子吸收光谱法、pH 用电位法。

土壤溶液某一元素的浓度(C)与水土比(H)的关系可用下式描述:

在某一水土比时解吸到土壤溶液的元素总量为:

$$Q=C \cdot H=C_1 \cdot H^{1-a} \quad \cdots \qquad (2)$$

植物根系吸收土壤溶液中的元素而使其浓度降低。当土壤溶液元素浓度降低至根系吸收所要求的最小浓度 (C_{Min}) 时土壤可解吸出来的该元素总量即为可供根系吸收的量,或者说土壤有效元素含量。该含量的大小为:

$$Q = \int_{C_{a}}^{C_{Min}} dQ = \int_{H_{a}}^{H_{Max}} C. dH$$
 (3)

式中 C_0 为溶液起始浓度,相应的土壤含水量为 H_0 (风干土); C_{Kin} 为根系吸收动力学最小浓度 $[C_0]$, H_{Max} 为相应的水土比。

将(1)式代入(3)式、并解出积分可得:

$$Q = [C_1^{1/a}/(1-a)](C_{mia}^{-1/a+1} - C_0^{-1/a+1})$$

1991-09-25 收稿

(4) 式表明,土壤有效元素含量随 C₁ 的增加而增加,随 a 和 C₈₁₀的增加而减少。由于 C₈₁₀对不同的植物来说是不同的,因此,土壤有效元素含量也与植物种类有关。目前只有很少一些元素和植物的 C₈₁₀是知道的,因此在实用上可用 H₈₆₀₀≈100,H₆≈0.05 来估计土壤有效元素含量,且称为可解吸性元素含量:

 $Q \approx [C_1/(1-a)] (100^{1-a}-0.05^{1-a}) \cdots (5)$

由于水土比即为土壤湿度,因此(1)式可用以估计田间水分含量(H₄)条件下的土壤 溶液浓度(C₄):

$$C_i = C_i \cdot H_i^{-a} \quad \cdots \qquad (6)$$

1. 1 镉

取法国洛林 (Lorraine) 地区两种土壤 (表 1)。加入不同含量和形态的镉,进行连续 2 年的黑麦草盆栽试验^[2],测定黑麦草吸镉量和不同处理土样在不同水土比下的土壤溶液镉 浓度。

1. 2 氦、磷、钾和 pH

土样取自华南农业大学农场水稻土、象岗山赤红壤和老桑园赤红壤。我们进行了玉米盆栽试验,每盆装土 5 kg,设 3 次重复,各种玉米 3 株,6 周后收割其地上部分,测定干物重和氮磷、钾含量。

土壤	处 理	总領 (mg cd/kg)	回归曲线 c=c ₁ · H ⁻ * (c 为 µg cd/L)	相关系数	观测数 n	可解吸 性領 (µg cd/kg)	無変草 含傷量 (mg cd/Kg)
神	对照	0.40	C=0. 92H-4.44	0. 978	5	7. 95	0.70
神釈性棕壌 (砂土)	領盐	3.40	C=24. 89H-6.44	0. 987	. 5	214.78	7.80
棕梅	污坭 1	1.60	$C=1.24H^{-0.716}$	0. 963	5	14. 31	1.22
(砂土)	污坭 2	4.60	C=4. 49H-4.78	0. 920	5	52. 48	3.06
排	对照	0.4	C=0.62H-6.000	0. 971	4	7. 55	0. 56
格 性	傷盐	6. 40	$C=40.20H^{-0.002}$	0. 986	4	347. 37	8. 29
淋溶性棕 壤	污坭1	1.60	$C=1.55H^{-6.416}$	0. 976	.4	38. 73	1. 32
(填土)	污泥 2	4. 60	$C=2.70H^{-6.585}$	0. 985	4	86. 80	3. 38

表 1 土壤溶液镉浓度与水土比的关系

2 结果和讨论

表 1 结果表明, 土壤溶液镉浓度与水土比关系符合 (1) 式, 回归相关系数均达显著或极显著水平。壤土镉强度 (C₁) 低于砂土, 但缓冲能力较强。镉盐的加入极显著提高强度指标, 但趋于降低容量指标, 即增加 a 值。污泥处理同时提高强度和容量指标, 但增幅较小。两年的盆栽试验表明, 黑麦草含镉量与强度 C₁ 呈显著的相关关系 (r=0.901**, n=24), 与可解吸性镉的相关性更高 (r=0.935**, n=24)。

表 2 结果显示, 氯磷、钾和氢离子的浓度与水土比的关系也符合(1)式。3 种土壤中,

水稻土氮的有效性最高,磷、钾中等,酸性较强,玉米植株产量和氮、磷、钾浓度中等。象 岗山赤红壤 钾有效性较高,氮中等,但磷很低,酸性强,玉米植株产量和吸磷量均很低,老桑园赤红壤氮钾有效性不高,但磷较高,酸度低,导致玉米产量较高。这些表明,土壤酸 度大、磷有效性低是限制玉米生长的障碍因子。

土填	元素	解吸曲线	观测数	相关系数	可解性元素	玉米	元素
		$C=C_1 \cdot H^{-1}$	n	r	含量Q	产量	吸收量
农场 水稻土 (1)	N ₁	C=106. 3H-6.166	4	0. 996	947. 6	· · · · · · · · · · · · · · · · · · ·	3. 19
	P,	$C=0.118H^{-6}$	4	0.991	2.68	12.68	0. 563
	K,	$C=24.16 H^{-6.618}$	4	0. 999	330. 9	±0.64	5. 96
	pH :	$pH = 4.40 + 058 lg^{H}$	4	0. 980	62. 88		
象岗山 赤红壤 (2)	N	84. 89H-4. 672	2		743. 8		3. 28
	P	$C=0.032H^{-8.134}$	2		1.99	1. 68	0. 280
	K	$C=45.58H^{-6.717}$	2		523. 9	±0.13	6. 91
	pН	$pH=4.58+0.39 lg^{4}$	1 2		70. 87		
老桑园 赤红壤 (3)	N	C=7.98H-6.401	2		205. 6		1. 29
	P	$C=0.082H^{-0.147}$	2		4.88	14.55	0. 663
	K	$C=11.87H^{-0.603}$	2		177. 0	±3.20	4. 42
	pН	pH = 6.26 + 0.411gH	2		13.94		

表 2 土壤元素解吸特征与玉米生长

本文介绍的解吸法,测定较简单,得到的表征土壤元素生物有效性的参数较全面,与植物根系吸收的联系较密切,且适合于多种土壤元素,这对于研究土壤的综合养分水平、找出限制因子、指导作物平衡施肥是有益的。它的应用需要更广泛的盆栽和大田试验作先导。

参考文献

- Barber S, A. Soil Nutrient Bioavailability, A Mechanistic Approach. John wiley & sons, Inc. New york. 1984. 21~47
- 2 Wu Q T, J L Morel & A Guckert. Effect of nitrogen source on cadmium uptake by plants. C. R. Acad. Sci. Paris, Serie III, 1989, 309; 215~220

^{*} 各参数的单位为,解吸的线中C为mg/L;可解吸性元素含量中N、P、K为 mg/kg士,H+为 m mol/kg士 王米产量,克/盆,元素吸收量为:%。