应用扫描电镜和 X 射线能谱仪 定量分析植物组织中的多种矿质元素

QUANTITATIVE ANALYSIS OF ELEMENT
IN PLANT BY ENERGY DISPERSIVE X—RAY ANALYSIS

任建南 (中国林业科学研究院分析中心电镜室)

Ren Jiannan

(Chinese Academy of Forestry, Biijing, China)

摘要 本文介绍一种用扫描电镜和 X 射线能谱仪定量分析植物组织中的 Mg、Al、Si、P、S、Cl、K、Ca、Mn、Fe 元素的方法。本方法样品前处理简单,分析速度快,费用低。

关键词 能谱定量分析;植物矿质元素

Key words Energy dispersive quantitative analysis; Element in plant

1 材料和方法

取 6 个待测植物样品,按植物矿质元素化学常规分析方法的要求进行化学分析。取 1 号植物样品的化学分析数据作为能谱分析的标准数据。

取待测样品 3 g 左右,进行干灰化,并用下式算出灰化率:w=w;/w; 式中:w 为植物样品的灰化率;w; 为样品的重量(g);w; 为样品灰分的重量(g).

将灰化样品在压片机上压成薄片,喷碳,即成能谱分析用的待测样品。

仪器及条件:用 SEM505 扫描电镜,EDAX9100/60 能谱仪。能谱测试条件为:加速电压 15 kv,束流 20 μ m,束斑 500 nm,放大倍数 60 倍,TV 扫描方式,样品表面距末镜极靴 34 mm,样品倾角 15°,X 射线起飞角 36.23°,分析活时间 100 S,计数率 4 000 cps.

取 1 号植物待测样品, 收集 X 射线能谱, 把其化学分析数值作为标准数据, 输入能谱仪内, 建立植物样品标准文件。

定量方法:收集完待测样品的能谐后,启动 SW9100 程序中的 QUAN 定量分析程序,选用所有待测元素的 Ka 峰,利用标准文件算出每个植物样品灰化后矿质元素的百分含量,再 乘以该样品的灰化率,即得植物矿质元素的百分含量,用公式表示为:Ca%=Ca′%×W 式中:Ca%为植物中元素 a 的百分含量,Ca′%为该植物样品灰化后元素 a 的百分含量,W 为该植物样品的灰化率。

2 结果与讨论

6 个不同植物组织的 10 种元素的能谱分析结果(E)和化学常规分析的结果(C)列于表 1(表中 Mn 的单位是 ppm,其余为百分含量)。从表 1 可以看出,对于常量元素来说,能谱分析的结果与化学常规分析方法的结果吻合的相当好,说明能谱定量分析的准确度是符合实用要求的。表 1 还列出了 1 植物样品重复灰化 4 次,能谱分析的结果 H1,以及 4 次分析的

平均值 X_1 、平均值的标准差 Sx_4 、4 次分析的最大绝对误差 e 和文献上给出的两次分析结果 所允许的绝对相差 e'。从数据可以看出, X_4 与 1°C 的值相当接近,大部分元素的分析误差均能达到化学常规分析方法的要求。K 元素的能谱分析误差较大,可能与样品灰化处理时温度较高,引起 K 元素的损失,以及 K 元素在电子束照射下易迁移挥发有关,引起 Ca 元素能谱分析误差较大的原因可能与 K 元素的 Kβ 峰(359 kev)与 Ca 峰的 Kα 峰(3.69 kev) 查 重 叠,校正困难有关(表中的 x 表示可变数字)。

表 1 6 个植物组织的 10 种元素能谱(E)及化学(C)分析结果

	Mg	Al	Si	P	S	CI	ĸ	Ca	Fe	Mn
1*C	0. 260	0. 030	0. 170	0. 150	0.110	0. 080	1. 32	0. 650	0. 034	653
1 E	0.270	0.026	0.180	0 . 150	0. 110	0.080	1. 54	0.610	0. 036	666
2*C	0.110	0.025	0.070	0.060	0. 056	0.014	0. 73	0. 350	0. 035	155
2*E	0.110	0.030	0.080	0.066	0. 052	0.013	0. 62	0.320	0. 036	157
3 * C	0.290	0.026	1.700	0.070	0. 075	0.340	0. 56	0.640	0.018	1088
3*E	0.210	0.026	1.720	0.050	0.091	0.280	1. 61	0.410	0. 022	1489
4*C	0. 075	0.005	0. 530	0.040	0. 025	0.077	1. 65	0.160	0. 007	347
4*E	0.072	0.004	0. 580	0.034	0. 023	0.080	1. 71	0.170	0. 005	282
5*C	0.300	0. 027	0.140	0.130	0.140	0.005	0. 96	0.610	0. 031	1282
5 * E	0. 310	0. 028	0. 160	0.110	0. 165	0. 005	0. 97	0.600	0. 035	1405
6 * C	0. 220	0. 023	0. 950	0. 050	0.064	0.140	1. 55	0.103	0. 011	339
6 * E	0. 170	0. 026	0. 960	0.045	0. 051	0. 120	1. 50	0.140	0. 011	374
H ₁	0. 260	0. 030	0. 170	0.150	0.110	0. 080	1. 320	0.650	0. 034	653
H ₂	0. 270	0. 026	0. 180	0.150	0.110	0. 080	1.540	0.610	0. 036	666
H ₂	0. 210	0. 025	0. 240	0.120	0.110	0. 080	1.560	0.550	0. 030	666
H ₄	0. 260	0.019	0. 230	0. 140	0. 085	0. 080	1. 310	0.700	0. 045	761
X.	0. 250	0. 025	0. 205	0.140	0.104	0. 080	1. 433	0.628	0. 036	686
Sx4	0. 014	0. 003	0. 018	0.007	0.006	0. 000	0. 068	0. 032	0. 003	25
e	0.060	0. 011	0. 070	0. 030	0. 025	0. 000	0. 250	0. 150	0. 015	108
e'	0. 0X	0. 00X	0. 0X	0. 0X	0. 00X	0. 00 X	0. 05	0. 03	0. 00X	X0
X10	. 0. 254	0. 021	0. 184	0. 157	0. 101	0. 079	1. 304	0. 640	0. 040	700
Sx10	0. 005	0. 002	0. 007	0. 003	0.003	0. 003	0. 010	0. 006	0. 001	22
e%	5. 78	26. 44	12. 20	6. 83	8. 15	7. 24	2. 60	3. 00	12. 0	9.

表中列出了对同一个植物灰化样品在不同时间,不同区域上重复分析 10 次,其结果的 平均值 X₁₀、平均值的标准差 Sx₁₀和相对标准差 e%。这些数据说明,用能谱定量分析植物 组织中多种矿质元素,其精确度也能达到实用要求。

植物组织中所含元素种类多,在一次分析中选择一个适于所有待测元素的加速电压不太容易。本实验根据即要尽量激发待测元素的 K 系能量,又要使信号噪声比尽可能大的原则,把加速电压定为 15 kv。图 1 显示了不同加速电压下,植物组织中部分元素 Ka 峰强度的变化。可以看出,除 K, Ca, Mg 元素的 Ka 峰强度随加速电压的变化有较大的改变外,其它元素 Ka 峰强度的变化不大。图 2 是植物组织中部分元素 Ka 峰峰背比随加速电压变化的情况。可以看出,几乎所有待测元素,在 15 kv 左右峰背比最大。

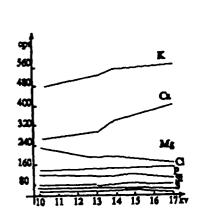


图 1 不同加速电压下 ka 峰强度的变化

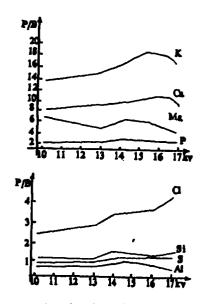


图 2 组织中部分元素 ka 峰 峰比随加速电压变化的情况