棉花四个栽培种胚珠表皮纤维 细胞分化的比较研究

THE COMPARATIVE STUDIES ON FIBER CELL DIFFERENTIATION
OF FOUR CULTIVATED COTTON SPECIES

林庆文 刘海虹 贾君镇 (北京农业大学电镜室)

Lin Qingwen Liu Haihong Jia Junzhen

(Beiuing Agricultural University

Electron Mioroscope Lab.)

马欣荣 徐楚年 寿元 孙振元 (北京农业大学农学系)

Ma Xinrong Xu Chunian
Shou Yuan Sun Zhenyuan

(Beijing Agricultural University Department of Agronomy)

摘要 取棉花4个栽培种陆地棉(Cossypian larsutum L.)北农1号,海岛棉(G. bartaclense L.)8763依,中棉(G. Artoreum L.)完县紫杆和草棉(G. Artoreum L.)金塔品种开花前2天,1天,开花当天,开花后1天的胚珠。观察其表皮细胞超微结构的变化。开花前后这4个棉种胚珠表皮细胞解剖结构上的变化相似。开花当天表皮纤维原始细胞突起,胞内线粒体,高尔基体,内质网等等细胞器急骤增多,液泡融合增大,大量整旁体形成。开花后一天变起细胞伸长,内质网及高尔基体极发达,液泡增大占去细胞大部分空间。关于纤维原始细胞的来源。不同棉种有所不同。完县中棉观察到亮细胞分化成纤维细胞,北农一号和金塔草棉则可见亮、暗两类表皮细胞均可分化突起,海8763依则未观察到亮、暗两类细胞分化。暗细胞是由于液泡中电子致密物质酚类物质弥散出来所致。

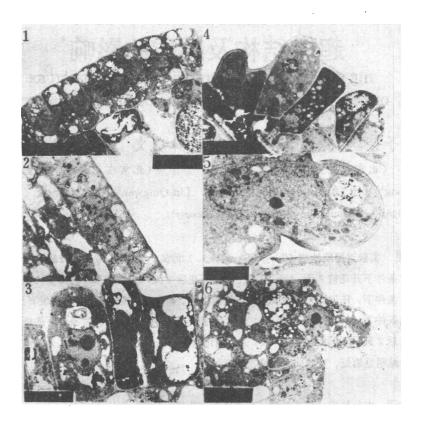
关键词 棉花;胚珠表皮细胞;纤维细胞;超微结构

Key words Cotton ovule epidermall cell; Fiber cell; Ultrastructure

材料选用陆地棉(Gossypium hirsutum L.)、北农1号、海岛棉(G. barbadeuse L.) 8763依、中棉(G. arboreum L.) 完县紫秆和草棉(G. herbaceum L.) 金塔品种,取盛花期开花前2天,前1天,开花当天,开花后1天子房中部胚珠。常规生物制样。切胚珠近合点端细胞。JEM120—S 透射电镜观察。

观察发现 4 个棉种开花前后胚珠表皮细胞解剖结构上的变化相似。开花前 2 天、1 天的表皮细胞呈长方形,细胞中各种细胞器均能观察到,但不发达。液泡较少。一般棉种液泡中有电子致密的酚类物质,海岛棉中少见 (图版 1、图版 2),未见亮和暗两类细胞的分化。所谓暗细胞是指在透射电镜 (TEM) 下观察呈深染的细胞,是由于电子致密物即酚类物质从液泡中弥散出来所致;反之,则为亮细胞。

开花当天,纤维原始细胞突起。细胞核增大,核仁多个,其中一个较大。细胞内各种细胞器增多。大量高尔基体分泌泡向壁运输,形成大量壁旁体。液泡间相互融合,液泡增大。未突起的细胞中细胞器变化相应较小,细胞仍进行分裂。关于纤维原始细胞的来源,不


[•] 国家自然科学基金及国家科委资助课题

同棉种有所不同,完县中观察到亮细胞分化成纤维细胞,未见有暗细胞的突起(图版 4);北农1号和金塔草棉则可见亮、暗两类表皮细胞均可分化突起(图版 3);而海岛棉 8763 依则未观察到亮、暗两类细胞,且液泡中电子致密物少。开花后1天,突起细胞伸长膨大,胞内各种细胞器极丰富,尤其是内质网和高尔基体;其它表皮纤维原始细胞相继突起(图版 5、图版 6)。未突起的细胞变化相对不剧烈,只北农1号有亮暗细胞之分,其它三个棉种未观察到暗细胞。

开花前后棉花胚珠表皮细胞中发生的一系列可见的变化,表明从开花当天起物质合成 旺盛、代谢加快。开花后1天突起伸长的细胞中,内质网急剧增多。内质网除合成蛋白质 和脂质等物质外,在快速伸长的细胞中,可能参与质膜和液泡的膜的形成。大量壁旁体的产生可认为是在合成新壁。

对于纤维细胞分化的机理,Berlin(1976)观察陆地棉 Var. dunn56C 时发现亮、暗细胞的分化始于开花前 16 h, 开花当天一些暗细胞突起, 他认为只有暗细胞才能形成纤维细胞, 因液泡中的酚类物质是二体酚, 弥散至胞质中抑制了 IAA 氧化酶活性使 IAA 水平增高, 刺激纤维细胞的分化突起; 而亮细胞中 IAA 氧化酶活性高, IAA 水平则低, 不足以刺激分化。此观点一直得到普遍认可。我们观察的结果则有所不同。开花当天突起细胞可以是暗细胞, 也可以是亮细胞, 有的品种未观察到亮、暗细胞之分。已知酚类物质是一大类生长调节物质, 在植物的生长发育中起着一定的作用。前人已报道, 单体酚可作为 IAA 氧化酶的畏缩基加速 IAA 的降解导致生长抑制; 而多体酚或二体酚则抑制 IAA 氧化酶活性, 相应使 IAA 浓度增高, 促进生长分化。但对棉花胚珠表皮细胞内的酚类物质是单体还是多体(或二体)未见报道确证,据我们观察到的现象,可能单体及多体酚均有; 也可能酚类物质对棉纤维细胞的分化并未显示出特殊作用,亮、暗细胞的分化只是发育进程中的表现,可能具有品种特异性。这些问题有待于更深入的探讨。

据观察推测,棉花胚珠表皮细胞的分裂可能是不等分裂。不等分裂在细胞分化中作用很大,受精卵或孢子第一次分裂即是不等分裂,其所形成的子细胞即进入不同的发育途径,在植物体细胞的分化中,不等分裂也相当普遍,一些单子叶植物中,根表皮细胞经不等分裂形成根毛,以及在茎、叶表皮细胞中形成气孔母细胞等。这些例子中,由不等分裂形成的细胞本身一般并不进一步分裂,而直接分化。棉花胚珠表皮纤维细胞与根毛细胞一样,是一种表皮毛,二者的分化具有相似性。因此,推测棉花胚珠表皮细胞的分化突起是由于不等分裂造成的。

图版 1 示开花前1天的北农1号, \times 810,2 示开花前1天的海岛棉 8763 依, \times 810,3 示开花当天的北农1号亮、暗两类突起细胞, \times 1.2 k,4 示开花当天的中棉完县紫秆,示突起的亮细胞,未经铅染及铀染, \times 1.6 k,5 示开花后1天的海 8763 依, \times 810,6 示开花后1天的草棉金塔, \times 810。