菠萝茎蛋白酶的提取及其活性保护研究

黄卓烈 林韶湘 李明启 (农业生物条)

搞要 本研究结果表明,被萝茎组织中含有 0.54~1.16%的蛋白酶。在酶膏的干燥过程中,45℃烘干使蛋白酶活性下降 61.32%,而真空干燥的酶活性只下降 18.32%。研究结果发现,硫代硫酸钠和半胱氨酸混用可部分地保护酶活性,使酶活性比对照提高 67.37%。在提取中,用氯化钠、醋酸锌、乙二胺四乙酸和抗坏血酸溶液洗涤酶复合物可使酶活性提高 110.48%。用 0.15~0.25%的丹宁作酶的沉淀剂是适宜的,既可保证酶活性,也可保证有较高的酶产量。

关键词 菠萝;菠萝茎蛋白酶;提取方法;活性保护剂

菠萝蛋白酶(bromelain)是广泛存在于菠萝各器官中的一类蛋白酶,而存在于茎中的蛋白酶称为菠萝茎蛋白酶(stem bromelain,EC3. 4. 22. 4 或 EC3. 4. 4. 24)。菠萝茎蛋白酶是一个多组分的混合体。据 Ota 等人[5]的研究,菠 萝茎蛋白酶至少有六个组分,分别称之为 SBA、SBB₁、SBB₂、SBB₃、SBB₄和 SBB₅。其中,SBA、SBB₄—5的分子量约为 23000,SBB_{1—3}的分子量约 27000。据测定,这六个组分肽链的氨基末端氨基酸都是缬氨酸,而其羧基末端氨基酸则有所不同。SBA、SBB_{1—3}的羧基末端是甘氨酸,而 SBB₄和 SBB₅的羧基末端则是丝氨酸。菠萝茎蛋白酶是一类糖蛋白[3.4],其等电点约为 9.55。

被萝茎蛋白酶有着广泛的用途。在制革、食品、饮料等生产中应用很多。在医学上用之医治炎症等多种疾病。在我国南方,被萝种植面积很大,每年都有大量的被萝茎废弃,这是生产被萝蛋白酶的极好原料。可惜,目前在我国这种资源未被充分利用。本研究就是对被萝茎蛋白酶的提取及酶活性保护作探索,以图为生产提供参考。

1 材料与方法

1.1 试验材料

本试验用无剩卡因品种的茎为试验材料。

1.2 酶提取方法

方法一: 将被萝茎去叶除根,削去外皮、洗净、切碎。每公斤茎片加水 1kg 用匀浆机匀浆。匀浆液用六层纱布过滤。滤液用离心机以 4000 r/min 离心 20 min。弃沉淀。在上清液中缓缓加入已溶解的丹宁溶液,边加边搅拌,使液中丹宁的最终浓度为 0.1%。加毕,静置使酶复合物沉淀后,用虹吸法小心吸去上层清液,得下层酶复合物浓缩液。用 1N 盐酸将浓缩液调 pH 至 3.4。然后将浓缩液离心(4000 r/min),得酶青。将酶青量一12℃以下冻结。5~10 h 后用真空减压法干燥(简称真空干燥)或在干燥箱中 45℃烘干,得干酶。

方法二:此法的前面步骤同方法一。丹宁浓度用 0.1%或按试验要求变化 (见下文)。加

毕丹宁后,静置使酶复合物沉淀,用虹吸法小心吸出上层清液,余下的酶复合物浓缩液每 Kg 加入乙二胺四乙酸二钠 0.1 g,醋酸锌 0.1 g,氯化钠 0.3 g,抗坏血酸 0.06 g。充分搅拌后,每 kg 再加入 0.1 g 乙二胺四乙酸和 0.3 g 氯化钠,再搅拌均匀。将之用 4000 r/min 离心 20 min。酶青在一20℃以下冻结 5~10 h 后真空干燥。

1.3 酶活性测定

菠萝茎蛋白酶活性测定按陶宙锌等[1]的方法进行,以酪蛋白为底物。酶活性以"万单位/g"表示[1]。

2 试验结果与分析

2.1 蛋白酶在菠萝茎中的含量

茎也是被萝植株的一种贮藏组织。其细胞含有较多的贮藏物质,其中蛋白酶含量丰富。 我们用"方法一"提取无刺卡因品种茎中的蛋白酶,以测定其含酶量。测定结果(表 1)表明,在丹宁浓度为 0.1%的条件下,测得茎中含粗酶在 0.54~1.16%之间(鲜茎含干酶量),平均达 0.763%。这要比菠萝果含酶量要高得多。一般菠萝鲜果含蛋白酶量在 0.08~0.12%之间。可见,鲜茎中酶含量是鲜果酶含量的 8~10倍,是提取菠萝蛋白酶的较好原料。

表 1 菠萝茎蛋白酶的含量

试验号	1	2	3	4	5	6	7	8	9	10	11	12	13	平均
鲜茎含干酶(%)	0.900	0. 820	1. 160	0. 922	0.749	0.710	0. 766	0.719	0. 610	0. 420	0. 780	0. 540	0. 819	0.763

S=0.184 8=0.176

2.2 不同干燥方式对酶活性的影响

在试验中,我们用酶青作不同干燥方式的试验,设真空干燥和把酶青量烘箱中 45℃烘干两种方式,分别测定湿酶青和干酶的活性,并把湿酶活性换算成干酶活性。结果 (表 2) 表明,酶青在干燥过程中活性会有不同程度的降低。其中真空干燥的酶活性平均降低 18.32%,烘干的酶活性平均降低 61.32%,比真空干燥的下降率要大得多。这个结果说明,酶青干燥方式是个相当重要的过程,应引起注意。从本结果看,真空干燥要比 45℃烘干好。

表 2 干燥过程对旋萝茎蛋白酶活性的影响

干燥方式	湿痹折干酶平均活性 (万单位/g)	千醇平均活性 (万单位/8)	干酶比湿酶增減(%)	
真空干燥	32.91	26. 88	-18.32	
45℃烘干	31.96	12. 36	-61.32	

2.3 几种物质对菠萝茎蛋白酶活性的影响

菠萝茎蛋白酶是一种巯基蛋白酶,其活性中心含有巯基。在酶制剂干燥过程中,活性降低可能是活性中心的巯基被氧化的结果。因此,在提取过程中,适当用还原剂保护巯基免遭氧化,可能是保护酶活性的一个办法。本试验中我们用具有还原能力的硫代硫酸钠、抗坏血酸和半胱氨酸,在酶浓缩液离心前加入。试验结果列于表 3 中。由表 3 可见,添加各种物质,酶活性都比对照有不同程度的提高(抗坏血酸除外),提高幅度最大的是"硫代硫酸钠+半胱氨酸"组合,达 67.37%。"硫代硫酸钠+抗坏血酸"组合也比对照增加 20.06%。

效果最差的是单独使用抗坏血酸,有时甚至出现酶活性轻微下降的现象。

事 3	几种物质对查询	玄巫山路泛州	: 約縣域
- T	/LTT 155 MLA1 JE 15		:072774

物质组合	酶活性(万单位/g)	相对活力(%)
对照(不加保护剂)	29. 51	100
硫代硫酸钠	34. 69	117. 55
抗坏血酸	27. 31	92. 54
硫代硫酸钠+抗坏血酸	35. 43	120. 06
硫代硫酸钠+抗坏血酸+半胱氨酸	42. 37	143. 58
抗坏血酸+半胱氨酸	35. 3 5	119. 79
硫代硫酸钠+半胱氨酸	49. 39	167. 37

注: 各物质的浓度均为 1000 ppm。

2.4 不同抽提方法对产品酶活性的影响

在抽提过程的"方法一"中增加"洗涤"程序即成为"方法二"。将方法一和方法二所得的酶产品分别测定活性并作比较,其结果列于表 4 中。由表 4 可见,方法一产品的平均活性为 26.44 万单位/g,而方法二产品的平均活性达 55.65 万单位/g,比方法一提高了110.48%。经 t 测验,结果表明差异达到极显著的水平 (表 5)。这说明,采用方法二提取分离菠萝茎蛋白酶要比用方法一好得多。

表 4 两种抽提方法对菠萝茎蛋白酶活性的影响

方法验曼	1	2	3	4	5	6	平均	方法二比方法一增
方法一	43. 84	24. 92	26. 59	26.10	17. 83	19. 37	26. 44	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
方法二	56. 66	59. 17	63. 29	46. 62	37. 29	70. 84	55. 65	110. 48%

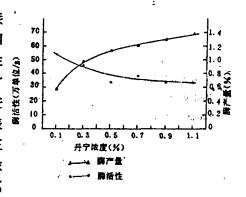

注:酶活性单位是:万单位/6。

表 5 两种抽提结果 t 测验

DF	Se²	$S \overline{x}_1 - \overline{x}_2$	t	tu. es	t _{0. 41}
10	115. 047	6. 19	4. 719 * *	2. 228	3. 169

2.5 丹宁用量与酶活性和酶产量之间的关系

丹宁是蛋白质的沉淀剂。丹宁用量多少会直接影响酶产量。丹宁用量多,蛋白质沉淀多,产量相对较高,但成本增大。加之,丹宁用量也与酶活性及产品质量有直接关系。实用上究竟用多大浓度才算合适,这是急需解决的问题。本研究中,我们进行了丹宁浓度与酶产量及活性的关系研究,结果表示于图 1 中。从图 1 可见,酶产量与丹宁用量呈正相关。在丹宁浓度为 0.1~1.1%的范围内,随着浓度增加,粗酶产量呈上升趋势。在丹宁浓度为 1.1%时,粗酶产量达 1.38%。可见,升高丹宁浓度可提高粗酶产量。但另一方面,酶的活性却与丹宁用量

不同丹宁浓度对疲萝茎 蛋白酶活性的影响

虽负相关。随着丹宁浓度增大、产品酶的活性下降。因此,在实践上不能因追求产量简言 融制大丹宁浓度。既要考虑产量,更要考虑质量。这是因为,丹宁不是蛋白酶的专一沉淀 制;而是所有蛋白质的沉淀剂,只是各蛋白沉淀所要求的浓度不同而已。丹宁浓度增加,会 把某些杂蛋白一齐沉淀,产量当然上升。但由于此杂蛋白的存在,导致产品纯度降低,质 量下降,酶的比活当然下降。由图 1 可见,在两曲线交点附近,即丹宁浓度使用 0.15~ 0.25%之间应是合适的。这样既可求得一定的产量,又可保证酶的质量。

3 讨论与结论

本研究结果揭示,在用丹宁提取被萝茎蛋白酶的流程中,丹宁用量、酶活性保护、酶育干燥方式等对酶都有重要影响。就丹宁用量来说,使用 0.15~0.25%的浓度是合适的。这样可减少产品的杂质,保证酶的活性,又能保持一定的产量。其次,保护酶活性的措施一般依靠改善工艺流程和应用酶活性保护剂。本试验应用硬代硫酸钠和半胱氨酸作保护剂效果很好。它可能使酶的活性基团巯基保持还原状态而免遭破坏,从而提高活性,再次,酶复合物的洗涤也是提高产品酶活性的有效办法。本研究中,用含有氧化钠、醋酸锌、乙二胺四乙酸和抗坏血酸的溶液对酶复合物进行洗涤,一方面可使需复合物释放出都高的酶,从而成倍地提高产品酶的活性,另一方面,由于乙二胺四乙酸的存在,可减少某些金属高于对产品质量的干扰,从而对提高产品质量也有积极的帮助。最后,酶的干燥方式也是十分重要的,一般不应该使用烘干方式,因为烘干方式会使酶活性大幅度下降。较有效的方法是用真空干燥法。

此外,在被萝茎组织中含有蛋白酶抑制剂。这种抑制剂也是低分子量的蛋白质^[2,4]。在提取酶时,抑制剂也一齐被提取出来,混合在产品中。因此,在没有排除抑制剂之前,酶活性势必受到干扰。这是被萝茎蛋白酶活性一般比较萝果蛋白酶 (EC 3. 4. 22. 5) 活性低的一个可能原因。但如何排除这种抑制剂的干扰,尚有符详细研究。

多考文獻

- 1 陶亩等、潭知敏、黄菜方、被萝蛋白酶活力测定法的改进、药物分析杂志, 1982, 2 (2): 102~103
- 2 Heinrikson R L and Kezdy F J. AcRiic cysteine protesse inhibitors from pineapple stem. Methods Enzymol. 1976, 45 (B): 740~751
- 3 Murachi T et al. Purification and physical characterization of stem bromelain. Biochem, 1964, 3: 48~55
- 4 Ota S et al. Preparation and chemical properties of purified stem and fruit brometains. Wiechem, 1964, 3: 180
- 5 Ota S et al. Reinvestigation of fractionation and some properties of the protectlytically active compenents of atem and fruit bromelains. J Biochem, 1985, 98: 219~228
- 6 Reddy M N et al. Primary structural analysis of sulfhydryl protesse inhibiters from pineapple stem. J Biol Chem. 1975, 250 (5): 1741~1750

THE INVESTIGATION TO PREPARATION OF STEM BROMELAIN AND PROTECTION OF THE ENZYME ACTIVITY

Huang Zhuolie Lin Shaoxiang Li Mingqi (Department of Agricultural Biology)

Abstract The tissue of pineapple stem contained $0.54\sim1.16\%$ of stem bromelain. It was indicated that the activity of the enzyme desiccated in oven at 45% declined by 61.32% and that desiccated by vacuum process declined by 18.32%. It was discovered that sodium hyposulfite plus cysteine was an effective protector of enzyme activity. It could raise the enzyme activity by 67.37%. The activity and the quality of the enzyme complex could be improved effectively by cleansing with a solution containing ascorbic acid, disodium edetate, sodium chloride, and zine acetate. The suitable concentration of tannic acid to precipitate stem bromelain was $0.15\sim0.25\%$.

Key words Pineapple: Stem bromelain: Preparation technology; Protector of activity