精油防治仓库害虫的实仓应用:

徐汉虹 赵善欢 江福银 黄国维 (昆虫毒理研究室)

(广东省花县花东农技站)

摘要 采用 4 种精油对 4 种仓库害虫进行了模拟实仓防治试验。结果发现,0.2% (W/W) 肉桂油拌种对小麦的保护效果可维持 8 个月以上, 以 0. 45 mg/cm; 的剂量处理麻袋, 货叶黄 皮和八角茴香精油处理能保持小麦4个月无虫,肉桂油可保持8个月无虫,实仓试验中发现, 15 ppm 马拉硫磷加 15 ppm 肉桂油混用处理, 虫口减退率达 100%, 30 ppm 马拉硫磷和 30 ppm 肉桂油处理的虫口减退率分别为89.8%和98.5%。

关键词 肉桂油;仓库害虫;实仓应用

为了开拓仓库害虫防治的新途径,寻找新一代无公害杀虫剂,尤其是为广大农村的储 粮害虫找到一个安全简便的防治方法,作者通过室内毒力测定,从隶属于 21 科的近百种植 物精油中,筛选出了数种高效的植物精油[5]。为了探讨实仓应用的可能性,作者用筛选出来 的有效精油进行了模拟实仓试验和实仓应用试验、并就植物精油与有机农药的混用问题进 行了探讨。

材料与方法

1.1 供试昆虫

玉米象 Sitophilus zeamais Motschulsky、赤拟谷盗 Tribolium castaneum (Herbst)、锯谷盗 Oryzaephilus surinamensis (Linne) 和谷囊 Rhizopertha dominica (Fabricius)。虫种由广东省粮食科 学研究所提供,饲养繁殖后供试。

1.2 供试精油及农药

肉桂油 Cinnamomum cassia Presl. 华南农业大学陈尊典老师提供

八角茴香 Illicium verum Hook. f. 华南植物所资源室提供

齿叶黄皮 Clausena dunniana Levi. 华南植物所资源室提供

冷磨橙油 Citrus sinensis (L.) 广东省杨村柑桔场提供

70%马拉硫磷乳油 浙江宁波农药厂生产

溴氰菊酯结晶 天津南开大学元素所提供

1.3 试验方法

1.3.1 模拟实金试验 根据丁希泉[1]方法,采用正交设计,设置精油品种、用药量、全部

⁻ 国家自然科学基金资助课题。 1993-01-10 收稿

拌药或表层拌药,加盖(麻袋封口,扎上橡皮筋)与否和消毒(小麦用 80℃高温处理 1 h)与否等 5 个因子(表 1)。每个玻璃瓶盛 500 g 小麦,精油用少许丙酮稀释后拌入小麦中。待丙酮挥发后,将此玻璃瓶移入 3.4 m×2.4 m×3 m 的养虫室(T=25±1℃,RH>75%。每天光照 12 h)内。养虫室的另一头放入数瓶饲养的玉米象、赤拟谷盗、锯谷盗和谷囊、并揭去封口的尼龙筛绢,以保证有足够的初侵染源。4 个月和 8 个月时各检查 1 次各处理的总虫数,调查方法是将小麦过筛检查。按下列公式计算防治效果:

表 1 模拟实仓保护试验正交设计因素水平编码表

水平 ·		因		素	
小十一.	A 精油种类	B用药量	C前处理方式	D保护方式	E拌种方法
1	内 桂 油	0. 2%	消毒	加盖	全部拌油
2	八角茴香	0.02%	不消毒	不加盖	表层拌油
3	齿叶黄皮			•	
4	冷磨橙油				

- 1.3.2 处理包装试验 精油用丙酮稀释后喷于麻袋上,使单位面积上精油沉积量达到 0.45 mg/cm²。其他条件同 1.3.1。
- 1.3.3 实仓应用试验 药麸配制:参考张国梁等^[3]的方法配制。按粮食总量 0.1%称取洁净干燥的麦麸,薄摊在塑料薄膜上。按处理粮食总量和使用剂量称取精油,加入少量丙酮,用超低容量喷雾器将药液喷洒在麦麸上,充分拌麦麸,使药液均匀分布。

储藏种子杀虫试验:广东省花县花东农技站 1991 年 5 月从四川调进的"汕优 63"晚稻种子,因故没能售出,当年 11 月已发生严重虫害。在调查了虫口密度后,拌入带药麦麸,盛于麻袋内。另设一处理是将精油用超低容量喷雾器喷于麻袋表面,塑料薄膜覆盖,自然堆放,1 月后检查虫口密度。

农户储粮防虫试验:在广东花县花东镇在农民刚收割的晚稻中撒上带药麦麸,拌和,盛于编织带中,自然堆放。设不施药为对照。每隔一段时间检查虫口密度,每处理随机取样 1 kg,过筛后计数害虫头数/kg。

2 结果及分析

2.1 模拟实仓防治试验

在养虫室内进行的模拟试验结果(表 2)表明:在 4 个月时,处理 1(0. 2%肉桂油)、处理 5(0. 02%肉桂油)和处理 7(0. 2%八角茴香)能完全防止赤拟谷盗、玉米象、锯谷盗和谷蠹的 侵染,对小麦达 100%的保护效果。在 8 个月时检查,0. 2%的肉桂油处理对小麦仍维持 100%的保护效果。采用萧兵等[6]方法对试验结果进行分析,得出如下结论:5 个试验因子中,A 因子(精油品种)起主导作用。不同精油品种间差异很大,以肉桂油的效果最好。B 因子 (用药量)对处理 4 个月后的结果影响不大,两个用药水平都有较好的防治效果。但随着试验时间的延长,B 因子变得重要起来,精油的持效期与用药量是成正相关的。从拌药方式来看,是全部拌药比表层拌药好。小麦储藏前进行高温处理(C 因子)对提高前期的防护效果作用 较大,但对后期的效果影响小,因为害虫在前期对小麦有了一定的再侵染。不加盖的处理比

加盖的处理好,这可能与仓库害虫的避光性有关。

表 2A 实仓模拟试验 4 个月时的结果及分析

\A=A =1		因		虫口密度		
试验号 一	A	В	С	D	Е	 (头/500 g)
1	1	1	2	2	1	0
2	3	2	2	1	1	41
3	2	2	2	2	2	64
4	4	1	2	1	2	137
5	1	2	ı	1	2	0
6	3	1	1	2	2	27
7	2	1	1	1	1	0
8	4	2	1	2	1	43
指1	0	164	70	178	84	
标 2	64	148	242	134	228	$\sum x = 313$
之 3	68					
和4.	180					•
平1	0	41	17. 5	44.5	21	较优条件
均 2	32	37	60.5	33. 5	57	A ₁ C ₁ E ₁ D ₂ B ₂
指 3	34					
标 4	90					
极差	90	4	43	11	36	

表 2B 实仓模拟试验 8 个月时的结果及分析

		因		煮		虫口密度		
试验号	A	В	С	D	Б	(头/500 g)		
1	1	1	2	2	1	0		
2	3	2	2	1	1	384		
3	2	2	2	2	2	572		
4	4	1	2	1	2	235		
5	ı	2	1	1	2 .	275		
6	3	1	1	2	2	239		
7	2	1	1	1	1	515		
8	4	2	1	2	1	353		
指1	275	989	1382	1409	1252			
标 2	1087	1584	1191	1164	1321	$\sum x = 2573$		
之3	623							
和 4	588		•					
平1	137. 5	247. 3	345. 5	352. 3	313	较优条件		
均 2	543. 5	396	297.8	291	330. 3	$A_1B_1D_2C_2E_1$		
# 3	311.5							
标 4	294				era dit			
极差	406	148.7	47.7	61.3	17. 3			

应指出,此实仓模拟试验是在仓库害虫侵染繁殖最适宜的条件下进行的,此条件持续8个月,而且虫源充足。此种情况在实仓中不可能发生。因此,同样的处理在实仓的效果应远好于此模拟试验。

2.2 处理包装试验

拌药施用方式适合于广大农村农户储粮防虫。但这种方式比较费工费时,为了探讨简易的施药方法,作者试验了处理包装物的方法。表 3 表明,以 0.45 mg/cm²的剂量处理麻袋,在 4 个月内齿叶黄皮、八角茴香、肉桂油都能完全忌避 4 种主要仓库害虫的侵染。到 8 个月时,以肉桂油的防治效果(97.78%)最好,其次为八角茴香(75.43%)和齿叶黄皮(60.58%)。

精油品种	用量 (mg/cm²)	施药间隔 期(月)	总虫数 (头)	玉米象 (头)	赤拟谷盗 (头)	谷 囊 (头)	锯谷盗	防治效果
	(mg/cm ⁻)	规门刀	(大)	(大)	(X)	(大)	(头)	(%)
齿叶黄皮	0. 45	4	0	0	0	0	0	100 a°
		8	231	207	2	3	19	60. 58d
八角茴香	0.45	4	0	0	0	0	0	100 a
		8	144	41	5 9	0	44	75. 43c
冷磨橙油	0.45	4	27	20	5	2	0	89. 96b
		8	351	302	32	9	8	40. 10e
肉桂油	0.45	4	0	0	0	0	0	100 a
		8	13	9	1	1	2	97. 78a
CK		4	269	17	4	205	43	
		8	586	39	0	320	227	

表 3 精油处理麻袋对小麦的保护效果 1990. 11~1991. 7

本试验说明,国家粮库收购的袋装新粮或经检疫无虫的进口粮食,入仓码堆后,在外露的麻袋处喷雾内桂油,可达到长期防虫的效果。如结合防潮处理加盖塑料薄膜的话,持效期会更长,效果会更好。对于已发生虫害的粮食,可采用磷化氢熏蒸后再喷肉桂油的处理办法,同样可保持粮堆长期无虫,以减少利用磷化氢熏蒸的次数。这对于延缓仓库害虫对磷化氢的抗药性具有重要的意义。

2.3 实仓应用试验

1991年11月对广东省花县花东农技站的水稻种子仓库进行了处理。该仓库存有麻袋装"汕优 63"水稻粮种 6000 kg,当年5月从四川购进,反映受仓虫为害严重。经作者调查平均虫口密度为49.17头/kg。作者将自制的带药麦麸拌入水稻种子中,1月后检查效果。结果见表4。由表4可知,处理1(15 ppm 马拉碗+15 ppm 肉桂油+0.2 ppm 溴氰菊酯)和处理2(15 ppm 马拉碗磷+15 ppm 肉桂油)的虫口减退率都达到了100%。处理3(30 ppm 马拉碗磷)和处理4(30 ppm 肉桂油)的虫口减退率分别为89.58%和98.60%,而处理5(15 ppm 马拉碗磷+15 ppm 肉桂油)的虫口减退率分别为89.58%和98.60%,而处理5(15 ppm 马拉碗磷+15 ppm 肉桂油喷雾麻袋)的虫口减退率只有22.35%。这说明,肉桂油的驱避效果优于马拉碗磷。肉桂油与马拉碗磷混用能明显降低马拉硫磷的用量,且效果比单独使用的优越。在仓库客虫已严重发生的情况下不宜采取处理包装物的方法。

[·]纵列数据后随字母相同者,示在5%水平上差异不显著 (DMRT)。

		表 4 实仓应用防治结果 1991~1992年 广东花县								东花县				
<u> </u>			处理量	处理 1	 的虫	口密度	(头/	(kg)	处理	后虫	口密度	(头/k	g)	女口波
编	处 理	处理方式		ġ.		其		中	.8		其	4	,	退率
용			(kg)	虫数	麦蚧	五米象	谷書	赤拟谷姿	总虫数	麦蛾	五米倉		赤拟谷谷	(%)
1	15ppm 马拉硫磷十	麦肤为载体	1000	53. 75	11	0. 75	40	2	0	0	0	0	0	100a·•
	15ppm 肉桂油+ 0.2ppm 溴氰菊酯	拌 种												
2	15ppm 马拉硫磷十	麦麸为载体	1000	50	1	10	39	0	0	0	0	0	0	100a
	15ppm 肉桂油	拌 种												
3	30ppm 马拉硫磷	麦麸为载体拌科	1000	48	0	5	41	2	5	0	0. 25	4.75	0	89. 58ь
4	30ppm 肉桂油	麦麸为载体拌料	1000	53.75	2	8	43	0.75	0.75	0	0	0.75	0	98.54a
5	15ppm 马拉硫磷十	将药喷到麻袋上	1000	42. 5	1	10	31	0.5	33	1	8	24	0	22. 35c
	15ppm 肉桂油	后盖塑料薄膜												527 565
6	СК		1000	47	0	9	38	2	50	1	11	36	2	

* 水稻品种为"汕优 63",当年 5 月从四川购进。取样方法为 5 点取样,称够 1kg。重复 5 次,取其平均值;"纵列数据后随字母相同者,示在 5%水平上差异不显著(DMRT)。

3 讨论

对花东镇 4 户农民的近 5 000 kg 稻谷进行防虫处理,结果检查发现,30 ppm 肉桂油处理和 15 ppm 马拉硫磷加 15 ppm 肉桂油处理,可保持稻谷一年没虫。但由于后期检查时,农民已将部分处理食用,此试验有待重复验证。

肉桂和八角茴香等树木在我国南方广为栽培,人们结合丘陵和山地的绿化造林工作可大量种植,既能收到山地利用及材用之益,又为发展我国天然香料和药物生产长期提供了原料。在这方面,广西的宁明、龙津和百色等县大量种植八角茴香;广东的高要、罗定、信宜、郁南、德庆等县大量种植肉桂,已经为我们提供了很好的经验[2]。这些产品一方面可用于香料工业和食品工业,另一方面也可用于农药工业。由于农药工业对精油品质的要求远低于香料工业和食品工业,从而给低品位的精油找到了市场。人们还可以将提取精油后的残渣用于害虫防治,使得我国的精油植物资源得到更充分地利用。本研究为精油的利用开辟了一条新途径,给这些经济林木的综合开发展示了更为广阔的前景。

齿叶黄皮是多年生常绿小灌木,生长粗犷,繁殖容易,十分适宜石灰岩地区种植,是 粤北贫困山区的常见植物,其出油率高达 0.7%。如能合理种植开采,既可绿化山区改善生 态环境,又可促进山区经济的发展。

肉桂、八角茴香和齿叶黄皮精油都是食用香料^[4],用于害虫防治时对人是安全的。加上害虫不易产生抗药性,对植物或其产品无害,且气味芬芳,又兼有杀菌作用。施用精油可起到防虫防霉的双重功效,正是人们所要求的无公害农药,特别适合储藏物害虫和卫生害虫的防治。随着生活水平的提高,人们对这类芳香杀虫剂的要求会越来越迫切。

如从现在价格考虑,直接用精油防治害虫是不合算的。但如果将精油与有机合成农药 混配使用,或作为农药的增效剂和加香剂使用,经济上是完全可行的。精油的主成分大都 为倍半萜和芳香烃衍生物,容易人工合成,完全能满足工厂化生产的需要。

可以预见,精油或其有效成分将会大量地用于害虫防治,从而促进害虫化学防治的发展。

致谢 花县花东镇李兆荣副镇长给予本研究支持和帮助, 谨此致谢!

参考文献

- 1 了希泉. 农业应用回归设计. 长春: 吉林科学技术出版社, 1986, 14~54
- 2 朱亮锋,陆碧瑶等. 芳香植物及其化学成分.海口.海南人民出版社,1988,3
- 3 张国梁,陈宪铭. 农家储粮. 北京:科学技术文献出版社,1985,41
- 4 林进能等, 天然食用香料生产与应用, 北京, 轻工业出版社, 1991, 18, 36, 121
- 5 徐汉虹,赵善欢,猪毛蒿精油的杀虫活性研究,华南农业大学学报,1993,14 (1):97~102
- 6 萧兵,钟俊维,农业多因素试验设计与统计分析,长沙,湖南科学技术出版社,1985,66~88

EXPERIMENTS ON THE USE OF ESSENTIAL OILS AGAINST STORED—PRODUCT INSECTS IN STOREHOUSE

Xu Hanhong Chiu Shin-Foon
(Laboratory of Insect Toxicology)
Jiang Fuying Huang Guowei
(Huadong Agricultural Technical Station, Hua County, Guangdong Province)

Abstract The tests of four essential oils against 4 species of stored-product insects, Sitophilus zeamais, Tribolium castaneam, Oryzwephilus surinamensis and Rhizopertha dominica, insimulated storehouse were carried out in Guangdong Province. The results showed that cassia oil at a dosage of 0.2% by seed dressing kept the stored wheat free from damage by insects for as long as 8 months. Using a dosage of 0.45 mg/cm² to treat gunnysack, the essential oils from Illicium verum and Clausena duminana protected the wheat from being damaged by stored-product insects for 4 months, whereas cassia oil for as long as 8 months. The results of experiments in storehouse indicated that the combination of 15 ppm cassia oil caused 100% mortality of stored-product insects and 30 ppm malathion or 30 ppm cassia oil caused tested insects 89.5% and 98.5% mortalities, respectively.

Key words Cassia oil; Essential oils; Store-product insects; Storehouse experiment