J. South China Agr. Univ.

青饲玉米抗性育种的远缘杂种优势试验

卢小良

(华南农业大学畜牧系)

摘要 远缘杂交种华农 1 号青饲玉米的杂种优势,表现在根系较发达、耐涝、耐冷、耐酸性土壤,适应高温气候,高抗大斑病、小斑病,能适应较差的环境条件。

关键词 青饲玉米;耐酸性;耐涝性;抗病性中图分类号 S513·034

青饲玉米是奶牛主要优质青料,能量高,适口性好,采食量高,容易青贮。华南夏季长期高温,青饲玉米因而早花减产,病害和恶劣气候的袭击使减产更严重。青饲玉米供应不足,造成对采食量低和劣质的牧草的依赖,被迫增加精料补充营养,精料比例大,加大了成本,奶牛血液呈酸性,对牛奶高产稳产不利,这已经形成华南奶牛业饲料轮供的主要问题。如果育成抗高温,抗病等抗逆性强的青饲玉米品种,可望解决上述困难。玉米远缘杂种优势的机理研究成果,可以成为抗性育种的有效工具。

在玉米抗性育种中,利用类玉米的抗性基因,美国研究得较多。Mangelsorf 以多年生类玉米(Zea sp. perennis)与栽培玉米(Zea mays)杂交,育成根系发达,抗病力强的多年生玉米[5];类玉米的一年生亚种墨西哥类玉米(Zea sp. mezicana)起源于热带南美洲山地灌丛[6],抗逆性很强,对大斑,小斑病等真菌性病害的抗性强于多年生类玉米[1]。而且玉米与类玉米的杂交亲和性强[6],基因特性可在后代 F1 中表达,玉米对大、小斑病的抗性遗传有显性、上位性、加性、多基因性的特点,既有质量性状,亦有数量性状,以数量性状为主,存在杂种优势[2];此外,玉米植株形态特性及光温适应性的遗传,也是大致一样[4]。在青饲玉米的育种上,至目前为止,还未见到通过育成墨西哥类玉米与栽培玉米的单交种,利用两者在抗逆性遗传上的杂种优势的报道。本文主要是报道华农1号青饲玉米抗逆性的杂种优势试验。该品种是墨西哥类玉米与甜玉米(Zea mays L. var. rugosa)的单交种,由华南农业大学从1983年至1992年育成,1992年登记,中国饲料牧草育成品种登记号为126号。

1 材料与方法

首先经 6 代自交,选育成墨西哥类玉米和超甜玉米的自交系,再选配成单交种华农 1 号,以华农 1 号为参试种,进行 5 个试验,包括:抗病性试验,高温期生长试验,低温适应性试验,根系形态杂种优势试验和耐劳、耐酸性调查。

1.1 抗病性试验

分两部分进行,随机区组设计,3次重复,小区面积为 20 m²。在乳熟期每小区随机调查 10 株的整株发病情况,依据 0,0.5,1~5 等 7 级分级标准记录。

1993-03-03 收穫

试验 1: 在深圳光明华侨畜牧场的水田进行。对照种是多穗玉米科 6(由光明华侨畜牧场提供)。 粤顶 1号(由华南农业大学中心实验室提供)。 把发病等级按下列公式折算为下列指标:发病普遍率(%)=(病株数/总株数)×100,以发病普遍率结合病斑类型调查鉴定是否存在垂直抗病性(以质量遗传控制)和水平抗病性(以数量遗传控制);发病严重率(%)=(各级病株数乘以相应级数之和/最高级数×总病株数)×100;病情指数(%)=(各级病株数乘以相应级数之和/总株数×最高级数)×100^[2];对上述发病严重率和病情指数两个指标结合病斑类型调查鉴定各品种抗病力的程序。百分数指标经过 Arc Sin X 转换,再进行方差分析。

1.2 根部形态比较试验与耐酸性、耐涝性观察

试验在顺德市的割草饲料地进行,用科 6,广西单交种南校 8 号、广东的地方品种"大署 麦玉米"作为对照种,拉丁方设计,4 次重复,小区面积 13 m²,收割时在每小区定点取 10 株的地下部,测量单株最大根粗、不定根数,观察根的颜色、韧性,测定土壤 pH 值;此外,在深圳光明华侨畜牧场的水田试验种植华农 1 号 1/15 hm²,以同样面积的科 6 作对照种,观察其耐捞性。

1.3 高温期生长观察

试验在华南农业大学进行,对照种是甜 111,参试种是华农 1 号,面积约 20 m²,施 N 为 69 kg/hm²。1991年 5 月 5 日播,由出苗至吐丝期,每 7 天定点测量两品种各 5 株的株高,结合气象资料分析,华农 1 号是否克服了母本的高温期早花减产特性,这种特性是所有玉米普遍存在的。

1.4 耐冷性观察

以 A₁、甜 111、科 6 作对照,以华农 1 号为参试种。试验在华南农业大学进行,1991 年 12 月 15 日播,观察幼苗对寒潮的敏感性,结合气象资料分析它的耐冷性。

2 结果与分析

2.1 抗病性试验

表 1 表示了试验 1 的结果。在潮湿的水田小环境中,病原菌传播较普遍,发病普遍率较高;从病情指数和病斑类型上看,华农 1 号对大、小斑病均表现为高抗特性,以水平抗性(数量遗传)为主,也表现出垂直抗性的特征;CK1 粤顶 1 号对大斑病表现为中抗,对小斑病表现为高抗,比较华农 1 号,t 测验差异不显著;CK2 科 6 对大、小斑病表现为中感^[2]. 与华农 1 号比较,差异极显著。试验 F 值差异显著、极显著。表 2 反映了华农 1 号在试验 2 中表现的抗病性杂种优势。在丘陵梯田干燥的环境下,各品种发病程度稍低。华农 1 号对大斑病的抗性表现了较强的杂种优势,在方差分析中,F 测验和 t 测验差异极显著,具有较强的中亲优势

和竞争优势,也具有一定的超亲优势。尽管小斑病抗性的 F 测验和 t 测验差异不显著,亦表现了中亲优势、超亲优势和竞争优势。结果表明,在抗病育种上利用远缘杂交 1 代的杂种优势,能育成抗病力很强的青饲玉米品种。

751 ct 455 CI	品种			病指标的样本	- /± •		
測定项目 .	华农1号青 饲玉米(2)	粤顶 1 号 (CK ₁)	科 6 (CK ₂)	CK, -a	CK ₂ —a	F 值·	
大斑病普遍率(%)	56. 7	76. 7	96. 7	20. 0	40.00	5. 37	
大斑病严重率(%)	11. 1	28. 3	48.7	17.2	37.6**	10.85	
大斑病病情指数(%)	6.0	22. 7	47.3	16.7	41.3*	9.29*	
大斑病病斑类型 [©]	MR. R	MR	MS				
小斑病普遍率(%)	60. 0	56. 7	96.7	-3.3	36.7**	16. 01*	
小斑病严重率(%)	10.0	11. 2	33. 0	1. 2	23. 0 • •	35.05	
小斑病病情指数(%)	6.0	6.3	32.0	0. 3	26.0**	67.06	
小斑病病斑类型	hr,r,nr	hr	nr				

表 1 远缘杂交青饲玉米华农 1 号抗病性试验

- * 1. 大斑病病斑:R 为高抗型、MR 为中抗型、MS 为中感型。
 - 2. 小斑病病斑:T 为高抗型、hr 为退绿斑、nr 为坏死症。
 - 3.F测验和t测验,"表示差异显著,**表示差异及显著。

病害	发病级数平均数					抗病性杂种优势(%)				
	华农 1 号 (F ₁)		A ₁ (\$ 高 、 亲值 HP)				Fi 对 8 超亲优势			- F值
小斑病	0: 32a	0. 53a	0. 50a	0.52	0. 45a	39. 62	36. 00	38. 46	28. 89	2.10

表 2 远缘杂交青饲玉米抗病性的杂种优势试验"

- 1)1. MP 值(中亲值)作为父母本值平均数,不能参与方差分析。
 - 2. 数据后面小写字母相同者表示 t 测验不显著,小写字母不同者表示 t 测验差异极显著。
 - 3. * *表示F測验差异极显著。表 3 同

2.2 根部形态及耐涝、耐酸特性观察

从表 3 看到,华农 1 号单株根最大直径是各个对照种的 1. 25~1. 31 倍,单株平均根数是对照种的 2. 28~2. 42 倍,方差分析,差异极显著。在 pH4. 4 的酸性土壤条件下,华农 1 号的青料产量是对照种的 2. 15~2. 25 倍,方差分析,差异极显著。乳熟期,华农 1 号根的颜色较白,韧性好,对照种的根黄褐色,韧性下降。可以设想华农 1 号根的活力较强。

在深圳光明华侨畜牧场的试验水田,在5叶龄时,遭遇两场暴雨,华农1号与科6全株淹没3~4h两次,由于栽培玉米7叶龄前耐捞性差,科6全部淹死,而华农1号耐捞性强,全部没淹死,田面上再生的分枝根很多,仍然获得每公顷52.5t的青料产量。

项 目				品	种	华农1号比对照种提高率(%)				1	土壤
	华农	华农 1 号	大岩麦	科 6	南校8号	a b	<u>a-c</u>	<u>a-d</u>	F値	pH 值	
			(a)	(b)	(c)	(d)	<u> </u>	С	d		(水提)
单株最大村	夏直	잘(mm) 6.21	4. 95	4. 77	4. 75	25. 5**	30. 2**	30.7**	38. 32 • •	
单株平均	根数	女(条)	114. 87	50. 47	49. 89	47. 52	127. 6 • •	130. 2**	141. 6**	240. 46**	4. 4
青料产	(t/	hm²)	49. 07	21. 79	22. 82	22. 84	125. 2**	115.0	114. 9**	52. 47 • •	

表 3 远缘杂交青饲玉米华农 1 号根形态与耐酸性观察

2.3 高温期生长观察 华农1号与 母本在高温期生长观察 华农1号与 所示。全生长期的日平均气温为 28℃,最高气温为 36℃时,母本甜 111号柚雄较早.植较矮小,青料 量低,华农1号抽雄不提早,营养生 长旺盛,在主茎抽雄后,标高位分技抽雄后,株高 长才停止。最后,华农1号的株高是 其母本甜 111号的 2倍以上,青料 产量较高。结果表明,华农1号是 种高温期高产的青饲玉米,克服缺陷。

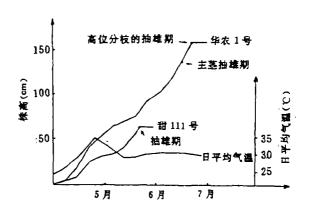


图 1 高温期两种玉米株高比较

2.4 耐冷性观察

当幼苗 4 叶龄时, 遇到寒潮冷害, 日平均气温在 3 天内由 18.2 ℃降到 3.9 ℃, 最低气温在 4 天内由 14.5 ℃降到 0.8 ℃。父本 A₁ 和母本甜 111 全部冻死, 科 6 的叶子被严重冻伤, 而 华农 1 号不受影响。这种现象表明其杂种优势对苗期玉米耐受短期寒潮有一定帮助。

3 结论与讨论

- 3.1 墨西哥类玉米含有大量的微效基因控制的,单基因控制的,显性的、加性的,上位性基因控制的抗大、小斑病遗传种质资源。在青饲玉米抗病育种上,通过培育墨西哥类玉米与栽培玉米单交种的方法,利用远缘杂种优势,可以把墨西哥类玉米以大、小斑病的抗病遗传种质充分地表现出来。
- 3.2 碳-4 植物在高温条件下生物产量一般较高。玉米是碳-4 植物,但栽培玉米高温早花减产特性抑制了这一优势的发挥。墨西哥类玉米是典型的热带玉米原始种,它与玉米的 Fi 代,克服了早花减产的缺点后,高温下生物产量高的特点就能表现出来。这一点为本试验证实。3.3 玉米育种的自交过程中,往往容易丢失抗性的微效基因,而玉米的抗逆性,又主要依靠多基因抗性遗传资源。这是抗逆性玉米育种工作量大和困难的主要原因。利用玉米热带原

始种——墨西哥类玉米的远缘杂交 1 代于青饲玉米抗逆性育种,解决上述困难就容易多了。

这样的新品种,会十分适宜在灾害性气候和病虫害多的夏季生长。

致谢 在本试验中,深圳光明华侨畜牧场的余玉粦、陈会智、罗建金同志协助做了一些工作,特些致谢。

参考文献

- 1 刘纪麟,徐尚忠,熊秀珠,等,玉米育种学.北京:农业出版社,1991.35~531
- 2 白金铠,潘顺法,罗畔池,等,玉米大、小斑病及其防治,上海:上海科学技术出版社,1985.6~160
- 3 于沪宁,李伟光.农业气候资源分析和利用.北京:气象出版社,1985。81~140
- 4 宋同明 玉米遗传与玉米基因突变性状彩图.北京:科学出版社,1989.59
- 5 佟屏亚,赵国磐。玉米史话、北京:农业出版社,1988,22~128
- 6 Walton C. Galinat. The Origin of Corn. In: Sprague. G F eds. Corn and Corn Improvement. Madison. Wisconsin American Society of Agronomy, Inc., 1977, 1~43

DISTANT HYBRID VIGOR EXPERIMENTATION IN SILAGE CORN RESISTANCE BREEDING

Lu Xiaoliang

(Dept. of Animal Husbandry, South China Agr. Univ.)

Abstract Hybrid vigor allowed the distant hybrid corn Hua Nong No. 1 silage corn to develop strong root system, high disease resistance to Helminthosporium turcieum leaf blight and Helminthosporium maydis leaf blight, tolerance towards high temperature, water logging, cold and acid soil conditions. It can adapt to adverse environmental conditions.

Key words Silage corn; Acid soil tolerance; Water logging tolerance; Disease resistance