紫背金盘提取物对小菜蛾的作用研究

邱宇彤 赵善欢 刘秀琼(华南农业大学昆虫专理研究室)

摘要 崇背金盘提取物对小菜蛾幼虫有拒食和生长发育抑制活性,以氨仿提取物活性为最高。饲喂处理幼虫出现脱肛、黑斑和畸形等缓慢症状,成虫的生殖过程受到影响,这种作用有利于压低田间种群数量。对多种杀虫剂产生抗性的小菜蛾品系对紫背金盘提取物没有抗性,因此,这种植物提取物可作为小菜蛾抗性治理的一条途径。

关键词 紫背金盘提取物:小菜蛾;拒食作用;生长发育抑制作用;小菜蛾抗性治理中图分类号 S482.39

小菜蛾(Plutella zylostella)是重要的十字花科蔬菜害虫,在亚热带地区发生严重。近年来小菜蛾对目前常用的几乎所有类型的化学杀虫剂乃至生物农药 Bt 都有抗性报导,抗性发展速度之快,抗性倍数之高引起了世界范围的重视。寻找小菜蛾的抗性克服途径成为蔬菜生产中急待解决的问题。从植物中寻找新的杀虫活性物质是新杀虫剂开发及害虫抗药性克服的有效途径。紫背金盘(Ajuga nipponensis)是唇形科草本植物。由于这种植物中含有昆虫蜕皮激素,养蚕业上用这种植物的提取物为幼蚕添食可以促进未龄幼蚕提前上簇并增加蚕丝产量[1]。本文探讨了紫背金盘提取物对小菜蛾的拒食及生长发育抑制作用,以及用做田间抗性小菜蛾防治的可能性。

1 材料与方法

1.1 试虫

田间小菜蛾品系采集于深圳市郊十字花科蔬菜田,在室内以菜心苗饲养,第2代四龄幼虫供生测用。敏感品系为 FS 品系,同样以菜心苗在室内隔离饲养。

1.2 紫背金盘提取物

紫背金盘采于华南农业大学昆虫毒理室标本园。植物开花后,将全草冼净风干,以甲醇冷浸,提取液浓缩后以石油醚萃取,得到石油醚提取物 B;甲醇部分再以氯仿萃取,取氯仿提取物 C;剩余甲醇提取物为 A,各部分分别浓缩,干燥后得到 A、B、C 3 个样品。生测时用丙酮稀释。

1.3 生测方法

1.3.1 叶片饲喂法 将甘蓝叶片用直径 1.5 cm 打孔器打成叶碟,在药液中浸 1 S 取出,晾干,置于垫有湿润滤纸的 9 cm 培养皿,每皿 6 片。将四龄小菜蛾幼虫接入培养皿中,每皿 10 头,24 h 后更换新鲜甘蓝叶片,每处理 5 个重复。

1993-03-29 收稿

1.3.2 点滴法 将试虫以二氧化碳昏迷后,将 1 叫 药液点滴于试虫背部,并饲以甘蓝叶片。 1.3.3 拒食测定 浸叶方法与叶片饲喂法相同,每培养皿 4 片叶碟,每皿接 1 头幼虫,24 h 后取出叶碟.小心剥去叶片被取食部位留下的表皮,用叶面积测定仪测定剩余面积,计算拒 食率,每处理 10 个重复。

1.3.4 产卵影响试验 将小菜蛾四龄幼虫以叶片饲喂法处理,存活下来的试虫化蛹后,分别置于 4.5 cm 长,直径 1.4 cm 的指形管中,羽化后,将 1 头雌虫与 2 头雄虫置于一管中,以纱布封口,每日饲以 10%的蜂蜜,计数雌蛾产卵量。

2 试验结果与分析

2.1 **紫背金盘不同提取物对小菜蛾的** 生物活性

用紫背金盘不同溶剂提取物处理小菜蛾四龄幼虫,对照试虫化蛹后,计算校正死亡率,结果如图 1 所示, 0. 4%和0. 2%的石油醚提取物饲喂处理四龄幼虫,校正死亡率分别为6. 7%和0;甲醇提取物上述浓度处理校正死亡率分别为22. 2%和18. 2%;氯仿提取物1. 0%,0. 4%和0. 2%3个浓度处理校正死亡率分别为94. 0%,54. 4%和41. 9%。结果显示,对小菜蛾四龄幼虫活性最高的是氯仿提取物。拒食试验中,紫背金盘甲醇和氯仿提取物的拒食中浓度(AFCso)值分别为0. 2865%和0. 2305%,见表1. 为

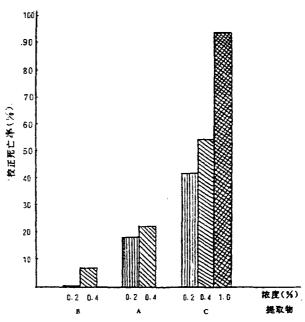


图 1 不同紫背金盘提取物饲喂处理小菜蛾四龄幼虫的效果(1989,广州)

此,对氯仿提取物的作用方式与作用特点作了进一步的研究。

表 1 紫背金盘不同提取物对小菜娥四龄幼虫的拒食中浓度 (1990,广州)

提取物	回归方程	相关系数	AFC ₅₀ (%)
甲醇(A)	Y=1.33+1.06X	0. 9385	0. 2865
氯仿(C)	Y = 2.21 + 0.83X	0. 8938	0. 2305

2.2 氯仿提取物的活性作用方式与特点

如前所述,紫背金盘氯仿提取物对小菜蛾幼虫有拒食作用;点滴处理四龄幼虫,到对照全部化蛹时,其 LD₅₀值为 2.414 μg/虫,对照药剂氰戊菊酯的 LD₅₀值为 2.170 μg/虫(见表 2); 叶片饲喂处理小菜蛾四龄幼虫其 LC₅₀值为 0.2143%(见图 2)。

	回归方程	相关系数	LD ₅₀ (µg/ <u>中</u>)
氯仿提取物	Y = 1.99 + 0.82X	0. 9931	2. 41
氰戊菊酯	Y = 0.34 + 1.54X	0. 9304	2. 17

表 2 紫背金盘氯仿提取物点滴处理四龄小菜蛾幼虫结果 (1990,广州)

从以上结果可见,紫背金盘氯仿提取物对小菜蛾四龄幼虫有拒食、触杀和胃毒作用活性。幼虫取食或接触一定量的药剂之后,便会出现一系列的中毒症状,但与有机磷、拟除虫菊酯等神经毒剂处理后迅速出现兴奋、呕吐、抽搐、麻痹等症状并很快导致死亡的情形不同,比较起来,前者出现中毒症状缓慢,主要症状为黑斑、脱肛、畸形等,出现这些症状后,幼虫仍能存活一段时间.最后缓慢死亡。

2.3 紫背金盘氯仿提取物对小菜蛾生 长发育的影响

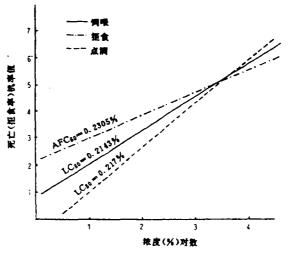


图 2 氯仿提取物不同方法处理小菜蛾四龄幼虫毒力曲线 (1990 广州)

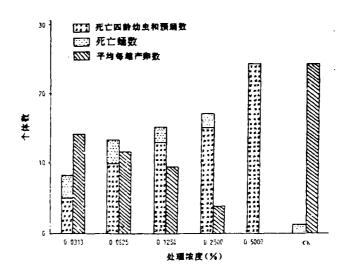


图 3 氯仿提取物饲喂处理小菜蛾四龄幼虫对其生长发育的影响 (1990 广州)

浓度的提高.产卵的雌虫数量减少;另一方面,产卵雌蛾的平均产卵量随处理浓度的提高也呈递减趋势。这两方面的作用造成了后代数量的减少,其中又以第一方面的作用较大。解剖不产卵的雌蛾卵巢,发现3种异常的现象:(1)卵巢发育不良,卵巢小管内无成熟的卵;(2)卵巢发育虽属正常,但第一粒卵停留在中输卵管处不能产出,该卵已进入胚胎发育的后期,这可能与某些产卵过程受阻有关(见图4);(3)卵巢发育基本正常,但交配囊皱缩,内无精包,

说明药剂可影响成虫交配。

赛 3	紫背金盘氯仿提取物对小菜蛾雌蛾产卵量	的影响	(1990)	广州)
-----	--------------------	-----	--------	-----

处理浓度 (%)	处理幼虫数	存活雌蛾数	产卵雌蛾数	总产卵数	所有雌蛾 平均产卵量	产卵雌蛾 平均产卵量
0.0313	60	24	12	344	14. 3	28. 6
0.0625	60	17	6	204	12. 0	34.0
0.1250	60	10	5	93	9. 3	18. 6
0.2500	60	8	1	25	3. 1	25.0
0.5000	60	6	0	0	0.0	0.0
CK	60	42	28	1010	24. 1	36. 1

2.4 氯仿提取物对不同小菜蛾品系的作用

以叶片饲喂法用紫背金盘氯仿提取物处理对多种化学杀虫剂有抗性的深圳品系和敏感品系小菜蛾,其 LCso值分别为 0.2143%和 0.2333%,见表 4

表 4 不同小菜蛾品系对紫背金盘氯仿提取物的敏感性(叶片饲喂法)(1990,广州)

品系	毒力回归方式	LC ₅₀ (%)	比值(SC/SS)	
深圳(SC)	Y = 0.579 + 1.330X	0. 2143	6 616	
敏感(SS)	Y = 0.583 + 1.312X	0. 2333	0. 919	

3 讨论

中国科学院上海有机化学研究所昆虫激素组(1981)曾用柱层析的方法从紫背金盘中分离出 4种蜕皮激素类物质^[23];Shimomura等^[50-11],先后从紫背金盘中分离出 8种苦味的二萜类物质·称为 Ajuga marins^[50-11]。这两类物质和比象 marins^[50-11]。这两类物质和比象 marins^[50-11]。这两类物质和比象 ft用活性有关。对菜青虫的试验有比较后,对菜青虫的过菜有较强的护食和生长发育,在比较中的一种,活性成分主要存在于氯质萃取物部分^[10-5],本试验对小菜或的研究也有相类似的结果。

用氯仿提取物处理四龄幼虫, 除对幼虫有拒食和生长发育抑制

图 4 不产卵雌蛾卵巢第 1 粒卵在中输卵管处已进入胚胎发育 后期

作用外,对成虫的生殖过程有明显的影响,成虫不产卵或产卵数量减少,这时压低田间种群数量有重要意义。可以设想药剂处理后存活个体生殖力的降低将不利于群体对药剂抗性的形成和发展,这对药剂的使用者是极为有利的。

深圳的小菜蛾已被证明对有机磷、拟除虫菊酯等多种化学杀虫剂产生了复合高抗性,然而紫背金盘提取物对该品系的作用与敏感品系并无差异,这提示我们植物性杀虫剂在小菜蛾抗性治理过程中作为新药剂的可能性。由于植物粗提物中含有多种成分,有多方面的作用机制和作用靶标,理论上分析,这类药剂较不容易引起抗药性的产生。对这类杀虫剂的研究可为小菜蛾抗性治理提供一条新的途径。

参考文献

- 1 中国农林科学院蚕桑科技服务组,应用植源性蜕皮激素调节蚕儿生长发育和增产蚕丝的研究,昆虫学报,1977,20(2):147~153
- 2 中国科学院上海有机化学研究所昆虫激素组、紫背金盘中植物蜕皮激素的分离和鉴定。化学学报、1981,39(5),466~469
- 3 江苏省植物研究所植化室激素组,等. 国产植物中蜕皮激素的分离鉴定和对家蚕生理活性的试验. 昆虫学报,1979,11(4):396~403
- 4 张业光,邱字彤,赵善欢,等、紫背金盘提取物对四种鳞翅目害虫作用活性的初步研究、华南农业大学学报,1992,13(4):63~68
- 5 刘准,尚稚珍,李宗钦,等. 紫背金盘杀虫活性探索,自然科学进展——国家重点实验室通讯,1992 (1):43~47
- 6 Kubo I, Klocke J A. Efficient isolation of phytoecdysones from ajuga plants by high-performance liquid chromatography and droplet counter—current—chormatography. J of Chromatography. 1983,257:157~161
- 7 Kubo I, Klocke J A. Asano S. Effects of ingested phytoecdysteroids on the growth and development of two lepidopterous larvae. J Insect Physiol, 1982,29(4):307~316
- 8 Marcard V M, Zebitz C P W, Schmutterer H. Wirkung von methanolischen rohextrakten aus Ajuga spp. auf entwicklungsstskien verschiedener stechumckenarten. J Appl Ent, 1986, 101:146~154
- 9 Shimomura H, Sasjoda Y, Ogawa K. Ajugamarin, a new butter diterpene foom Ajuga nuppomensus Makinw. Tetrahedron Lett, 1981, 22(14): 1367~1368
- Shimomura H, Sashida Y. Ogawa K. Iridoid Glucosides and phenylpropanoid glycosides in sjuga species of Japan. Phytochemistry, 1987 26(7):1981~1983
- 11 Shimomura H, Sashida Y, Ogawa K. Neo-clerodane diterpenes from Ayuga nippomensus. Chem Phsrm Bull, 1989.37(2):354~357

STUDIES ON THE EFFECTIVENESS OF EXTRACTS FROM Ajuga nipponensis TO THE DIAMONDBACK MOTH (Platella zylostella)

Qiu Yutong Chiu Shinfoon Liu Xiuqiong
(Lab. of Insect Toxicology, South China Agr. Univ.)

Abstract Crude extracts of Ajuga nipponensis possessed antifeedant and growth regulation effects on the larvae of the diamondback moth. Chloroform extract was the most effective. Symptoms including slowly appearing prolapse of the anus, blackening of the body wall, and malformation of larvae or prepupae; the reproduction process was also affected which might help inhibit the increase of the population in the field. An insecticide resistant strain of diamondback moth showed no resistance to the extract of Ajuga nipponensis. The authors suggest that applications of extracts of this plant would be a new method for the management of diamondback moth resistance.

Keywords Ajuga nipponensis extract; Diamondback moth; Antifeedant effect; Growth inhibiting effect; Management of diamondback moth resistance