烯效唑及中间体的高效液 相色谱分析法

吕冬 刘军 武侠 王敏 高文淑 (北京农业大学中心实验室,北京,100094)

摘要 本文论述了烯效唑及其中间体的高效液相色谱(HPLC)分析方法,使用 M_{ICRO} Si-5 色谱柱正己烷/异丙醇为流动相,紫外检测器,回收率 97.97%。

关键词 高效液相色谱;烯效唑中图分类号 O 658.1

烯效唑 [(E)-1-(4-3)] 無数 [(E)-1-(4-3)] 是一种超高效植物生长调节剂(化工部农药工业科技情报中心站,1989)。它是由前体烯酮经转位还原而得(Funaki et al, 1980)。其结构为(顺/反)烯醇和(顺/反)烯酮。

由于这 4 个组分分子量较大,极性较强,熔点高,结构差异不大,气化温度高,保留时间长,分离结果不佳,因而气相色谱分析效果不理想。本方法研究的是由前体(顺/反)烯酮向(顺/反)烯醇转化的动态分析,关于液谱分离条件已见报道(Hsueh et al,1986)。文献使用正己烷:乙酸乙脂(2:3)流动相,Si-5柱,分离以上 4 个异构体但顺酮与反酮分离效果差,而且正己烷无法回收,不适合工业分析。

作者利用高效液相色谱(HPLC)对流动相进行了优化筛选,找到了较理想的分析方法,并利用紫外分光度计对检测波长进行了测定,得到了灵敏度较高的检测波长。此方法对 4 个组分能完全分离,且分离时间短,准确度高,线性相关好,正己烷可回收利用,在工业产品分析方面,具有实践应用价值。

1993-04-10 收稿

1 仪器与试剂

高效液相色谱仪:

Varian 公司 5000-LIQUID CHROMATOGRAPH

Varian 公司 CDS-401 数据处理机

紫外分光光度计: 岛津公司 UV-190

正己烷,异丙醇(分析纯)

(顺/反)烯酮,(顺/反)烯醇均 >99%

2 实验部分

2.1 实验条件

2.1.1 检测波长 从分子结构看出,由于共轭双键较多可能具有较强的紫外吸收峰,以异丙醇为溶剂,在 200~350 nm 区间对标准品扫描,得到最强吸收峰为 270 nm。

2.1.2 色谱条件: 色谱柱: M_{ICRO} P_{AK}si-5 15 mm×4 mm

流速:1 mL/min 纸速 0.5 cm/min 柱温:32 ℃ 检测波长:270 nm

正己烷/异丙醇:95/5

2.2 标准曲线

2.2.1 分别准确称取顺酮、反酮、顺醇 $0.0\,200\,g$, 定容 $50\,m$ L 异丙醇中,配成 $120\times10^{-6}\%$, $100\times10^{-6}\%$, $80\times10^{-6}\%$, $60\times10^{-6}\%$, $40\times10^{-6}\%$, $20\times10^{-6}\%$ 标准溶液。

按色谱条件进行测定,结果见图,以面积 Y 对浓度 X 进行回归方程及相关性数据计

算:

顺酮

反酮

Y = 4747.5X + 29765.9 Y = 8753.3X + 7349.4

r = 0.9998

r = 0.9996

顺醇

Y = 6987.7X + 16382.0

r = 0.9996

线性范围 150×10-6% ~ 20×10-6%

2.2.2 准确称取反醇 0.0 400 g, 定容 50 mL 异丙醇中, 配成 240 \times 10⁻⁶%, 200 \times 10⁻⁶%, 160 \times 10⁻⁶%, 120 \times 10⁻⁶%, 80 \times 10⁻⁶%, 40 \times 10⁻⁶%标准溶液, 按色谱条件进行测定, 以面积 Y 对浓度 X 进行回归方程及相关性数据计算。

反醇 $Y=4\ 921.2X-7\ 840.2$ $r=0.999\ 7$ 线性范围 $240\times10^{-6}\%\sim40\times10^{-6}\%$

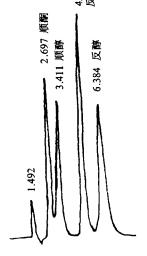


图 1 标准品液谱分离图

2.3 回收率试验

称取分析样品适量,定容 50 mL,测定其含量,再分别加入(顺/反)酮,(顺/反)醇标准品 3 份,测定总量扣除原分析样品含量为添加测定值,除以添加量,即可计算出回收率。见表 1。

表 1 回收率数据表							%
	添加量/g	測定值/g	回收率	平均回收率	CV	SD	
	0.015 2	0.014 9	98.2				
	0.0120	0.011 7	97.3	97.97	0.60	0.58	
	0.013 4	0.013 2	98.4				

2.4 最小检测量

2 倍噪声(2S/N)为最小检测量

进样量为 10 μL, 在色谱图上实测噪声为 0.74 mm。最小检测量数据见表 2。

表 2 最小检测量数据表

样品名称	浓度 / ng	高度/mm	最小检测量 / ng	
顺酮	0.6	52	0.017	
反酮	0.6	73	0.012	
顺醇	0.6	47	0.019	
反醇	1.2	41	0.043	

2.5 重复性

按色谱条件连续 5 次重复进样,每次进样量为 $10~\mu$ L, 顺酮, 顺醇, 反酮组为 80×10^{-6} % 反醇为 160×10^{-6} %。结果见表 3。

表 3 重复性数据表

样品	样品		重 复 次 数			平均值 变异系数 标准偏差		
名称	1	2	3	4	5		CV / %	SD / %
顺酮	76.6	78.2	79.1	79.0	77.7	78.16	1.37	1.07
顺醇	79.7	80.0	80.4	81.5	80.6	80.55	0.92	0.74
反酮	81.9	81.9	83.4	83.7	82.2	82.62	1.05	0.86
反醇	163.0	160.8	167.6	161.1	161.1	163.7	1.84	3.01

3 结果与讨论

- (1)此方法方便可靠,全部出峰时间仅为 8 min,平均回收率 97.97%,最小检测量 4.3 $\times 10^{-2}$ ng.
 - (2)此方法可用在烯效唑工业生产流程中的中间体及产品监测。
- (3)为了准确测量工业产品中组分含量,称取量应控制在 0.0 200 ~0.0 400 g 以适应其线性范围。

参考文献

化工部农药工业科技情报中心站.1989. 国外农药品种手册: 第 5 卷. 北京: 化学工业出版社, 378 ~379 Hsneh W L, Li R C, Pei Y Q. 1986. Separation of 1. 2, 3, 4-triazole deirative deitatires by

HPLC. Chromatography. J Chromatography, 356: 433 ~437

Funaki Y, Oshita H, Yamamoto S, et al. 1980-10-02. Geometric isomers of triazole compounds and fungicidal, herbicidal and plant growth regulating compositions confraining them. Ger. offen. 301 ~560

HPLC DETERMINATION OF SUMISEVEN AND ITS INTERMEDIATE

Lu Dong Liu Jun Wu Xia Wang Min Gao Wenshu (Central Lab., Beijing Agr. Univ., Beijing, 100094)

Abstract

In this paper HPLC methods for the determination of sumiseven and its intermediate is described. A Micro Si-5 Column and mobile phase: hexane/isopropanol and UV detector were used for deterimnation, with a recovery of 97.97%.

Key words HPLC; sumiseven

《华中农业大学学报》1995年度

征订启事

《华中农业大学学报》是农业部主管的面向国内外公开发行的农业科学核心期刊。本刊主要刊载校内外农业及生物各个学科的研究论文和实验报告;是国内外 30 多种检索杂志的原始科技信息源。欢迎您订阅 1995年度《华中农业大学学报》! 欢迎投稿!《华中农业大学学报》双月刊,16 开本,100页码,逢双月出版。刊号: ISSN 1000-2421 CN 42-1181/S; 邮发代号: 38-120。每期定价 2.00 元,全年订费 12.00 元,全国各地邮局均可订阅。如错过邮局订阅时间,可直接汇款向本刊编辑部订阅(不另收邮寄费)。

联系地址: 430070 武汉 华中农业大学学报编辑部

电 话: (027) 7815681 转 539