鱼藤酮及其混剂对蔬菜害虫的毒效研究

莫美华 黄彰欣

(华南农业大学植物保护系,广州,510642)

摘要 用杀虫剂联合作用方法优选出鱼藤酮混氰戊菊酯 (4:1)具明显增效作用.对 5 龄菜粉蝶幼虫共毒系数为 342.2(触杀)、449.8(胃毒);对菜蚜 $LC_{so}l$.23 mg/L. 该混剂对菜粉蝶幼虫有明显拒食和抑制生长发育作用, AFC_{so} 为 0.7 mg/L; 用 18 mg/L 混剂处理幼虫,发育抑制率为84.4%。田间试验表明: 鱼藤混剂对多种害虫有高效。30 mg/L 的混剂对菜粉蝶幼虫的防效相当于50 mg/L的氰戊菊酯,优于 75 mg/L的鱼藤精乳油;而对蚜虫 30 mg/L的混剂防效高于 50 mg/L 的氰戊菊酯和75 mg/L 的鱼藤酮。

关键词 鱼藤酮; 氰戊菊酯; 共毒系数; 拒食剂;生长发育抑制剂;菜粉蝶; 蚜虫中图分类号 S482.30

鱼藤 Derris 是早为世界公认的较理想杀虫植物。具有高效,低毒、低残留、害虫不易产生抗药性等优点,但单用则残效期短、成本高。如果与其它 杀虫剂混用,既能提高防治效果,减少用药量,降低成本,又能兼治多种害虫,扩大防治范围,还能延缓害虫抗药性和防治对其它杀虫剂产生抗性的害虫。我们对上述问题进行了研究。

1 材料与方法

1.1 材料

菜粉蝶(Pieris rapae L.)幼虫,在室内用甘蓝叶饲养 3~5 天后,挑选发育整齐的四龄或五龄虫供试验用;97% 鱼藤酮晶体,美制;95% 氰戊菊酯原药,日产;1.3% 鱼藤氰乳油(广东德庆化工厂,1990);20% 氰戊菊酯乳油(中山石岐农药厂);98% 巴丹原粉(日本);98% 乐果乳油(广州农药厂);99.9% 灭幼脲(江苏金坛激素研究所,1984);鱼藤精乳油(自配)鱼藤以苯抽提,测定含量,以0204 乳化剂配成乳油。

1.2 试验方法

- 1.2.1 触杀作用(点滴法) 用微量点滴器点滴杀虫剂丙酮液于五龄幼虫胸部背面,每处理用 5 个系列浓度分别点滴 30 头虫,重复 3 次,以点滴丙酮作对照,4 天后检查幼虫死亡和畸形蛹数,计算畸形率,按 Finney 机率值法编程序计算 LD₅₀、毒力回归式、增效作用的测定详见 Sun(1960)的方法。
- 1.2.2 胃毒作用测定法 采用叶片夹毒法, 待取食 12h 后用LI-3000型面积测定仪(美制)测定剩余叶面积、求每克虫取食剂量, 并观察计算畸死率、共毒系数和 ED₅₀。
- 1.2.3 拒食作用测定法 采用非选择性叶蝶法。评价拒食活性的拒食率、拒食中浓度 (AFC_{sv})和发育抑制率的计算法见张兴(1988)。

1.2.4 室内毒效及田间药效试验

(1)室内试验:在玻璃顶网室内进行盆栽,每处理 10 株黄瓜苗,重复 3 次,用手提喷雾器喷雾,对照喷清水。喷药前、后定期定点调查蚜虫存活数,计算虫口减退率。对于菜粉蝶幼虫,每次调查各虫龄虫态的数量及叶受害情况,计算虫口减退率、虫害指数和保叶效果、方法

1994-02-25 收稿

见张业光(1990)。

(2)田间药效试验:在甘蓝田里,随机划分各药剂处理小区,每小区面积为 3.5 m², 种植菜苗 20 株,每处理 3 次重复,用背负式喷雾器喷雾,对照组喷清水。喷药前、后,每小区定点检查10株的菜粉蝶幼虫数和3株上的蚜虫数。菜粉蝶每次调查各虫态的数量及叶片受害情况,计算虫口减退率,虫害指数和保叶效果。方法见张业光(1990)。

2 结果分析

2.1 室内药剂筛选

从鱼藤酮 10 个复配方中发现: 鱼藤酮混氰戊菊酯 (4:1) (以下简称鱼藤混剂)的共毒系数为 342.2, 具明显的增效作用; 而鱼藤酮混氰戊菊酯 (1.6:1) (广东德庆植保化工厂, 简称鱼藤氰)的共毒系数为198.9,稍有增效作用。鱼藤混巴丹(1:2)的共毒系数为137.0,仅有相加作用。其余的鱼藤混灭幼脲 1 号、混乐果等都无增效作用, 反而有拮抗作用, 结果详见表 1。

表 1	鱼藤酮及其混剂对五龄菜粉蝶幼虫筛选试验(点滴法)	1989年11月广
164 T	兰摩帕及共冼州对土菅米矿縣初出师远试短(1989年11月/

处 理	回归方程 Y=a+bX	相关系数(r)	$\mathrm{ED}_{50}/\mu\mathrm{g.g^{-1}}$	共毒系数
鱼藤酮	Y = 4.8855 + 0.8812X	0.9249	1.3488	
氰戊菊酯	Y = 5.9811 + 2.0480X	0.9683	0.3318	
鱼藤氰戊菊酯(4:1)	Y = 5.3473 + 0.5813 X	0.9999	0.2526	342.24
灭幼脲1号	Y = 4.8292 + 0.4848X	0.9746	2.2510	
鱼藤灭幼脲 1 号(1:2.56)	Y = 4.2672 + 0.5311X	0.922 2	23.9761	8.11
巴丹	Y = 3.9640 + 1.0416X	0.960 5	9.8780	
鱼藤巴丹(1:2)	Y = 4.8269 + 0.4737X	0.9048	2.3198	136.99
鱼藤酮	Y = 4.9897 + 0.7800X	0.9755	1.4264	
氰戊菊酯(1.6:1)	Y = 5.9381 + 1.5337X	0.9530	0.2445	
鱼藤氰戊菊酯 1.6:1)	Y = 5.6501 + 1.1003X	0.9761	0.2566	198.87
鱼藤氰戊菊酯(1:2)	Y = 5.3832 + 1.4152X	0.9614	0.5360	63.02
鱼藤氰戊菊酯(10:1)	Y = 4.9064 + 1.0819X	0.9788	1.2204	81.20
鱼藤酮	Y = 4.9706 + 0.4050X	0.9054	1.1819	
氰戊菊酯	Y = 5.8716 + 2.0150X	0.9889	0.3694	
乐果	Y = 1.5632 + 2.3590X	0.9758	28.6349	
鱼藤乐果(1:1)	Y = 3.4804 + 1.3971X	0.9969	12.2393	18.56
氰戊菊酯乐果(1:2)	Y = 5.0418 + 1.0915X	0.9690	0.9156	118.02
鱼藤氰戊菊酯乐果(1:2:4)	Y = 4.3114 + 1.0614X	0.9876	4.4543	24.55
巴丹	Y = 3.9640 + 1.0416X	0.9605	9.8780	
氰戊菊酯巴丹(1:8)	Y = 4.0732 + 0.9626X	0.9309	9.1797	27.88

2.2 胃毒和拒食活性测定增效作用

胃毒作用测定结果: 鱼藤混剂共毒系数为 449.8。增效倍数 3.5, 比触杀作用增效还大。而鱼藤氰(1.6:1)在胃毒试验中无增效作用,详见表 2。

表 2 鱼藤酮混氰戊菊酯对五酸菜粉蝶幼虫的胃毒作用(叶片夹毒法)(1) (1989年12月 广州)

处	理	供试虫数/头	$ED_{50}/\mu g \cdot g^{-1}$	共毒系数(C.T.C)	增效倍数
鱼藤酢	j	30	7.41		
氰戊菜	i	30	5.57		
鱼藤酢	混氰戊菊酯(4:1)	36	1.55	449.78	3.50
鱼藤酥	混氰戊菊酯(1.6:1)	30	9.97	65.95	

(1) 对照 30 头以丙酮涂叶片, 无死亡; 药剂为纯药, 以丙酮为溶剂, 施药后观察死亡幼虫数及畸形蛹数。

拒食作用测定结果: 鱼藤混剂的 (AFC₅₀) 为 $0.7 \, \text{mg/L}$, 拒食效果优于鱼藤酮 (AFC₅₀ 为 $1.7 \, \text{mg/L}$)和鱼藤氰 (AFC₅₀ 为 $4.47 \, \text{mg/L}$)。

从药剂对昆虫的生长发育来看,鱼藤混剂的发育抑制率达 84% 以上只需 18 mg/L与 50 mg/L 的鱼藤酮、60 mg/L的鱼藤氰的效果相当,说明鱼藤混剂对昆虫发育的抑制明显大于鱼藤氰和单用鱼藤酮。结果详见表 3。

表 3 鱼藤酮混氰戊菊酯对菜粉蝶幼虫拒食作用(1)

(1990年 广州)

处 理	回归方程 Y=a+b <i>X</i>	AFC ₅₀ /mg·L ⁻¹	相关系数 (r)	发育抑率/%
鱼藤酮	Y = 4.7931 + 0.8976X	1.70	0.9551	73.9/30 mg·L ⁻¹
鱼藤酮混氰戊 菊酯(4:1)	$Y = 5.228 \ 5 + 1.499 \ 7X$	0.70	0.938 5	84.4/18 mg·L ⁻¹
鱼藤酮混氰 戊菊酯(1.6:1)	Y = 4.3310 + 1.0289X	4.47	0.951 3	86.7/60 mg·L ⁻¹

⁽¹⁾ 非选择性。

2.3 田间药效试验结果

2.3.1 对菜粉蝶幼虫药效 田间试验结果表明:鱼藤混剂对菜粉蝶幼虫有很高防治效果。 喷药后 15 天,30 mg/L 的混剂的防效相当于 50 mg/L 的氰戊菊酯,明显高于 75 mg/L 的鱼藤酮的防效。30 mg/L 与 75 mg/L 的混剂防效差异不明显,说明混剂在较低浓度下就有较好的防效。处理后 22 天,混剂防效均达 80% 以上,而鱼藤酮单剂的只有 29.7%、氰戊菊酯的也只有 70.9%,保叶效果也有差异,混剂(30 mg/L)与氰戊菊酯(50 mg/L)的保叶效果均在 90%以上,而鱼藤酮(75 mg/L)的只有 49.9%,详见表 4。

表 4 鱼藤酮混氰戊菊酯对菜粉蝶幼虫防治试验(1) (1994年 广州)

处 理	浓 度	施药局	ā 15 d		施药	后 20 d	
	/mg·L ⁻¹	累积虫 害指 数	防治效果 /%	累积虫 害指数	防治效果 /%	叶片受害 指数 /%	保叶效果 /%
鱼藤酮混氰	75	15.8	75.7 A	12.0	81.2A	1.7	93.4A
戊菊酯(4:1)	30	15.3	76.4A	21.3	80.9 A	2.2	91.6 AI
氰戊菊酯乳油	50	21.3	67.2B	32.5	70.9 AB	2.0	92.2 AI
鱼藤精乳油	75	43.5	33.1B	78.4	29.7C	12.8	49.9
对 照	_	65.0	_	111.5	_	25.5	_

⁽¹⁾ 表內数据 3 次重复平均数,每小区面积 3.5 m², 喷药后 5 天下毛雨,其余天晴。标相同字母者表示在方差分析 (DMRT) 中于 1% 水准上无显著差异。

2.3.2 对蚜虫药效 鱼藤混剂对蚜虫也有很高防效。盆栽试验结果表明:鱼藤混剂对蚜虫防效高、作用迅速、残效期长。 处理后 24 h LC₅₀为 1.23 mg/L,用 15 mg/L 的混剂处理后第7 天防效仍达85%; 37.5 mg/L 的混剂处理后 1 天防效 93.6%、 $4 \sim 20$ 天防效均在99%以上。田间试验也证明相当有效,详见表 5、6。

表 5 鱼藤酮混氰戊菊酯对蚜虫药效(田间)(1)	(1991年	广州)
--------------------------	--------	-----

水 · 度	浓 度	施药后校正虫口减退率 /%			
	$/mg \cdot L^{-1}$	3 d	10 d	15 d	2 2 d
鱼藤酮混氰戊	75	85.1A	93.1 A	97.0 A	94.3A
南酯 (4:1)	30	84.7 A	88.9A	96.8 A	93.3A
【 戊菊酯	50	74.1 B	72.4B	84.2B	82.7 B
鱼藤精乳油	75	76.0B	73.3B	87.8B	80.5 B
対照⁽²⁾	_	-149.8	-678.3	-707.7	-390.4

- (1) 表内数据为 3 次重复平均; 每小区处理面积 3.5 m², 喷药后 5 天下毛毛雨, 其余天暗; 温度 12 ~ 18℃;标相同字母者示在方差分析(DMRT)中 1% 水准上无显著差异。
- (2)对照数字指施药后虫口减退率(%)。

表 6 鱼藤酮混氰戊菊酯乳油对菜蚜药效(盆栽) (1990年 广州)

	浓度		施药后校正」	虫口减退率/%	
_	/mg . L ⁻¹ 1 d	1 d	4 d	7d	20 d
鱼藤酮混	15	73.4	81.6	85.1	59.3
氰戊菊酯乳油 (4:1)	37.5	93.6	99.9	99.8	99.5
对 照	_	12.1	16.3	28.5	26.5

- (1)在玻璃网室进行,不受降雨影响,天晴,温度 27 ℃,相对湿度 70%。
- (2)对照组栏数字是施药后虫口减退率(%)。

3 结果与讨论

用鱼藤酮混氰戊菊酯 (4:1)处理菜粉蝶幼虫,不管从触杀、胃毒还是拒食等方面都有明显的增效作用。盆栽和田间小区试验都证明了这一点,并且还延长了残效期,对作物的保护效果比单用鱼藤酮和氰戊菊酯都好。而广东德庆植保化工厂生产的鱼藤氰因配比 (1.6:1),无论触杀、胃毒还是拒食,各方面的增效作用都不及鱼藤酮混氰戊菊酯 (4:1)。

鱼藤混剂的增效作用机制从作用方式来看,鱼藤酮除对害虫有触杀和胃毒作用外,还有 拒食、抑制昆虫生长发育等作用,而氰戊菊酯具有强烈的击倒作用,两者混用后,具有缓效和 长效两种作用,使害虫多个靶子受损,更易中毒死亡,这一点从混剂处理后试虫中毒症状为 两种药的综合症状得到证实。

从组织、生理、病理学方面来看,鱼藤酮及其混剂均能抑制昆虫的呼吸作用,使菜粉蝶幼虫 CO₂释放量降低,呼吸失去节律。它们还能破坏中肠和脂肪体细胞,造成昆虫局部变黑;严重地影响中肠道多功能氧化酶活性,使药剂不被分解而有效地到达靶子器官,这也是增效和中毒致死的原因。我们的实验结果证实了这一点。

鱼藤酮还能影响昆虫的氧化磷酸化,从而影响 ATP 的产生(Roan et al,1961)。ATP 是昆虫生理活动的主要供能场所,而在神经冲动传导过程中,Na⁺被离子泵喷出膜外和 K⁺被泵吸入膜内的过程是需能的,如果 ATP 受影响,能量供应不上,钠钾离子交换变慢,从而神经恢复原来的静止状态所需的时间延长,膜内Na⁺、膜外K⁺浓度升高,这就大大加强了 拟除虫菊酯对 Na⁺、K⁺电流的歇制作用,使负后电位更加增大和延长。另外,鱼藤酮本身也能使细胞膜内 Na⁺浓度上升(Murphy,1987),这就更增强了负后电位。这可能是鱼藤与 氰戊菊酯混用后有很好的增效作用的重要生理原因。这一推论有待进一步电生理实验的证实。

参考文献

吴秀华. 1985. 国内外拟除虫菊酯混合制剂的研究进展. 农药,25(3):20~22

赵善欢, 黄彰欣 1988 - 安全高效的鱼藤杀虫剂 . 植物保护, 14(1):44~45

张 兴. 1988. 川楝素对菜粉蝶幼虫生物活性的研究:[学位论文]. 广州:华南农业大学图书馆

张业光,1990_,非洲山毛豆提取物对菜粉蝶幼虫生物活性及其有效成份研究:[学位论文].广州华南农业大学图书馆

黄瑞纶. 1954. 杀虫药剂学. 北京:财政经济出版社,376~431

Goodhue L D. 1936. An improvement on the Gross and Smith colormectric method for the determination of rotenone deguelin. J ASSOC Official Agric, Chem, 19(1):118

Gross C R. Smith C M.1934. Colormectric method for determination of rotenone. J ASSOC Official Agric Chem. 17(2):336 ~ 339

Murphy E.Lefurgey A. Lieberman M.1987. Biochemical and structural changes in cultured heart cells induced by metabolic inhibition Am. J Physiol, 253 (5, 1):700 ~ 706

Roan C C. Hopkins T L.1961. Mode of action of insecticides. Ann Rev Entomol, 6:333

Sun Y P, Johson E R.1960. Analysis of action of insecticides against house flies. J Econ entomol, 53(5):887 ~ 891

STUDIES ON THE EFFECTS OF ROTENONE AND ITS ADMIXTURE AGAINST INSECT PESTS ON VEGETABLES

Mo Meihua Huang Zhangxin

(Dept. of Plant Protection, South China Agr. Univ ,Guangzhou,510642)

Abstract

Results of experiment showed that an admixture, mainly consisting of rotenone and fenvalerate(4:1) gave strong contact, stomach poison and antifeedant effect and the inhibitory effect on the growth and development of *Pieris rapae* L., and the co-toxicity coeffcients for contact and stomach poison were 342.2 and 449.8 respectively. The admixture was used to spray in 30mg/L in pot and field trials, and it gave the same control efficiency to *Pieris rapae* as 50mg/L of fenvalerate giving and was more effective than that of 75 mg/L of rotenone giving alon.

Key words rotenone; fenvalerate; co-toxicity coefficients; antifeedant; IGR'S