商 Riesz 空间注记^{*}

王石安 余彩玉

(华南农业大学基础部,广州,510642)

摘要 给出 Riesz 空间关于下定向子空间所作商空间仍是 Riesz 空间的特征。同时讨论了 Riesz 空间之间的同态关系。

关键词 Riesz 空间; 理想; 商空间

中图分类号 O177. 3

设 E 是一向量空间、 E_o 是 E 的线性子空间,则 $E/E_o = \{x = x + E_o \mid x \in E\}$ 也是 一向量空间。如果在E 上定义一个半序 \geq (即 \geq 是自反的、反对称的和传递的)满足条件:

- (1)若 $x \ge y$, y, y 则对所有 $z \in E$ 有 $x + z \ge y + z$
- (2) \dot{a} x≥y, 则对所有 α ≥0 有 α x≥ α y

则称 E 是一半序线性空间,E 中所有正元素的集合 $E_+ = \{x \in E \mid x \geq 0\}$ 称为 E 的锥、若 E_+ 满足 $E_+ \cap (-E_+) = \{0\}$,则称 E_+ 为真锥。若半序线性空间 (E, E_+) 中的任意两个元素 x, y 的上确界 $x \vee y$ 和下确界 $x \vee y$ 均在 E 中存在,则称 (E, E_+) 为 Riesz 空间。当 E_o 为半序线性空间 (E, E_+) 的线性子空间时,商空间 E/E_o 自然地关于锥 QE_+ 成为一半序线性空间 (Wong, 1980),若 (E, E_+) 还是 Riesz 空间,则 $(E/E_o, QE_+)$ 一般不再是 Riesz 空间。但 Schwarz(1984) 曾断言: QE_+ 是真锥当且仅 当 E_o 是一理想或 E/E_o 是 Riesz 空间当且仅当 E_o 是一理想。本文举例说明这个断言是错误的,并给出Riesz 空间关于下定向子空间所作商空间仍是 Riesz 空间的特征。同时还将讨论 Riesz 空间之间的同态关系。

本文总假设 (E, E_+) , (F, F_+) 为 Riesz 空间,并记 $x^+ = x \lor 0$, $x^- = (-x) \lor 0$, $|x| = x \lor (-x)$ 分别为 Riesz 空间 E 中元素 x 的正部、负部和模。 Riesz 空间 E 中线子空间 E_o 称为 Riesz 子空间 (相应地,正理想、理想、下定向的和序凸的),如果 $x, y \in E_o$,则 $x \lor y \in E_o$ (相应的, $F_p(E_o) = (E_o - E_+) \cap E_+ \subseteq E_o$, $E_o = S(E_o) = \bigcup \{[-u, u], u \in E_o \cap E_+\}$ 、若 $x, y \in E_o$ 则存在 $z \in E_o$ 使得 $z \le x$ 且 $z \le y$ 和 $E_o = F(E_o) = (E_o + E_+) \cap (E_o - E_+)$)。

1 商 Riesz 空间的特征

首先我们有如下正理想、理想和 Riesz 子空间之间关系:

引理 1 设 E_0 为 E 的线性子空间,则下述条件等价:

- $(1)E_0$ 为 E 的理想
- $(2)E_{o}$ 是 E 的 Riesz 子空间且是正理想
- (3)E。是下定向的且序凸

证明: $(1) \iff (2) \Rightarrow (3)$ 是容易的,往证 $(3) \Rightarrow (2)$, $\forall x \in E_0$, 由于 E_0 是下定向的,所以

1994-06-01 收稿

*校长基金资助项目

存在 $y \in E_0$ 使得 $y \le x$ 且 $y \le 0$, 从而 $y \le x \land 0$ 或

$$0 \le x^- = (-x) \lor 0 = -(x \land 0) \le -y \in E_0$$

又 E_o 是序凸的, 所以 E_o 是正理想且有 $x^- \in E_o$, 从而 E_o 是 Riesz 子空间。

Luxemburg 和 Zaanen(1971) 给出锥 QE+中的元素的如下特征:

引理 2 $\hat{x} \in QE_+$ 当且仅当存 $y \in E_0$ 使得 $x+y \ge 0$

由定义及引理 2 立即可得到:

引理3 QE+ 是真锥当且仅当 E。是 E中正理想。

下述例说明 Schwarz 的断言是错误的.

例 1 存在一正理想但非理想 E_o 使得 E/E_o 是一 Riesz 空间。 比如,设 $E=(\mathbf{R}^2,\leq)$, $E_{\perp}=\{(x,y)\in\mathbf{R}^2\mid x\geq y\geq 0\}$,又设 $E_o=\{(0,x)\mid x\in\mathbf{R}\}$,则 E/E_o Riesz 同构于 \mathbf{R} ,从而从而是一 Riesz 空间,但易知 E_o 是一个正理想而非理想。

对于下定向子空间 E_0 , 我们有如下 E/E_0 是 Riesz 空间的特征:

定理 1 设 E₀ 是 Riesz 空间 E 中下定向线性子空间,则下述条件等价:

- (1) (E/E₀, QE₊) 是一 Riesz 空间
- (2)商映射 Q: E → E/E_o 满足

$$Q(x \lor y) = Q(x) \lor Q(y) \quad \forall x, y \in E$$

- (3)QE+ 是一真锥
- $(4)E_o$ 为一理想
- (5)E₀是序凸的
- (6)E。为一正理想
- $(7)E_0$ 为一正理想且 $\hat{x} \in E/E_0$, $\hat{x} \ge \hat{0} \iff |\hat{x}| = \hat{x}$

证明: 容易验证, 当 E。为线性子空间时,

$$F_p(E_o) \subseteq S(E_o) \subseteq F(E_o) \subseteq F_p(E_o) + E_o$$

所以(6) \iff (5) \iff (4),由引理 3 知(6) \iff (3),又(7) \Rightarrow (6) 显然成立,因此我们只须证(1) \Rightarrow (2) \Rightarrow (7) 及(6) \Rightarrow (1) 即可。为此设(E/E_o , QE_+) 为一 Riesz 空间,x, $y \in E/E_o$,则则 $Q(x) \lor Q(y) = \hat{x} \lor \hat{y}$ 存在,由引理 2 知 $\hat{x} \leqslant x \checkmark y$ 且 $\hat{y} \leqslant x \checkmark y$.

设 $\hat{z} \in E/E_o$ 使得 $\hat{x} \leq \hat{z}$ 且 $\hat{y} \leq \hat{z}$,则由引理 2 知存在 z_1 , $z_2 \in E_o$ 使得 $z - x \geq z_1$, $z - y \geq z_2$, 又 E_o 是下定向的,所以存在 $u \in E_o$ 使得 $u \leq z_1$ 且 $u \leq z_2$,从 而 $z - x \geq u$ 且 $z - y \geq u$,于是

$$z \ge (u+x) \lor (u+y) = u+x \lor y$$

所以 $\hat{z} \ge x \sqrt{y}$ 因而 $x \sqrt{y} = \hat{x} \vee \hat{y}$

即 $Q(x \lor y) = Q(x) \lor (Q(y),$ 这就证明了(1)⇒(2)

至于(2) \Rightarrow (7), 只须证 $\hat{x} \ge 0 \Rightarrow |\hat{x}| = \hat{x}$, 为此, 由(2) 知

$$\hat{x} = Q(x) = Q(x) \lor (-Q(x)) = Q(x \lor (-x)) = Q(|x|) = |x|.$$

(6)⇒(1): 设 x ∈ E, 则由引理 2 知

$$\hat{x} \leq \hat{x}^+ \quad \exists \quad \hat{0} \leq \hat{x}^+$$

另一方面,假设在 E/E_o 中有 $\hat{x} \leq \hat{y}$ 且 $\hat{0} \leq \hat{y}$ 取 $x_i \in \hat{x}$, $y_i \in \hat{y}$ (i = 1, 2) 使得 $x_i \leq y_i$ 且 $0 \leq y_2$,

则

$$x = x_1 + (x - x_1) \le y_1 \lor y_2 + (x - x_1)^+$$

= $y_1 + (y_2 - y_1)^+ + (x - x_1)^+ \in y_1 + E_a$

又

$$0 \le y_1 \lor y_2 + (x - x_1)^+$$

所以 $x^+ \leq y_1 + (y_2 - y_1)^+ + (x - x_1)^+$

于是

$$\widehat{x}^+ \leq \widehat{y}_1 = \widehat{y}$$

所以 $(\hat{x})^+ = \hat{x}^+$,从而可知 E/E_0 是一Riesz 空间。

注: 若线性子空间 E_o 不是下定向的,因而也不是理想, E/E_o 也有可能是 Riesz 空间 例 2 设 $E=(\mathbf{R}^2, \leq)$, $E_+=\{(x, y)\in\mathbf{R}^2\mid x\geq 0, y\geq 0\}$

又设 $E_o = \{(x, -x) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$,则 E/E_o Riesz 同构于R. 因而是一 Riesz 空间,但容易看出 E_o 不是下定向的,因而也不是理想。

2 Riesz 空间的同态

Riesz 空间E和 F之间的算子 $T:E \to F$ 称为 Riesz 同态,如果 $T(x \lor y) = T(x) \lor T(y)$, $x, y \in E_o$ 如果 T 还是 1-1 的,则称 T 为 Riesz 同构。如果存在 E 到 F 的满 Riesz 同构,则称 E 与 F Riesz 同构。本节首先给出满 Riesz 同态的分解定理,然后作为推论得出 Riesz 同态的基本定理。

定理 2 设 $E \setminus F$ 是 Riesz 空间,T 是E 到 F 的满 Riesz 同态,A 是 E 的理想,若 $A \subseteq \text{KerT} = \{x \in E \mid T(x) = 0\}$

则存在 唯一的满 Riesz 同态 $T^{\bullet}: E/A \rightarrow F$ 、使得

$$T = T^{\bullet} \circ O$$

其中 Q: $E \to E/A$ 是典型商映射。并且,T* 是 Riesz 同构当且仅当 A = KerT 证明 令 T*: $E/A \to F: T^*(\hat{x}) = T(x)$,易知 T* 有定义且是满的。对任意的 \hat{x} , $\hat{y} \in E/A$,由定理 1 知

$$T^*(x \lor y) = T^*(Q(x) \lor Q(y) = T^*(Q(x \lor y))$$

= $T^*(x \widehat{\lor} y) = T(x \lor y) = T(x) \lor T(y)$
= $T^*(\hat{x}) \lor T^*(\hat{y})$

所以, T^{*} 是一 Riesz 同态。

又由于 $Q:E \rightarrow E/A$ 是典型同态,所以 $T \circ Q$ 是 E 到 F 的满同态,且

$$T^* \circ Q(x) = T^* (\hat{x}) = T(x) \quad \forall x \in E$$

因此 T*。Q=T

若存在 E/A 到 F 的满同态 S^* , 使得

$$S^{\bullet} \circ Q = T$$

则 $S^{\bullet}(\hat{x}) = S^{\bullet} \circ Q(x) = T(x) = T^{\bullet}(\hat{x})$ $\forall x \in E/A$

所以 $S^* = T^*$, 这就是证明了 T^* 是唯一的。

如果 $A = \text{KerT} \, \text{且 T}^{\bullet}(\hat{x}) = \text{T}^{\bullet}(\hat{y}), \, \text{则 T}(x) = \text{T}(y) \, \text{或者T}(x - y) = 0,$

从而 $x-y \in \text{KerT} = A$,于是 $\hat{x} = \hat{y}$,即 T^* 是 I-1 的,因此 T^* 是 E/A 到 F 的 Riesz 同构。

反之,若 T^* 为 E/A 到 F 的 Riesz 同构,则 $\forall x \in \text{KerT}$,有 $T^*(\hat{x}) = T(x) = 0$,从而 $\hat{x} \in \text{KerT}^* = \{\hat{0}\}$ 于是 $\hat{x} = \hat{0}$ 或 $x \in A$

所以 KerT⊂A、结合题设A⊂KerT 知

A = KerT

由定理2可得

定理 3 (Riesz 同态基本定理) 设 E 是一 Riesz 空间,则 E 的任一商空间 E/A (其中 A 是 E 的理想) 都是 E 的 Riesz 同态象;反之,若 F 是 E 的某一同态象: F = T(E),则 F Riesz 同构于 E/Ker T.

下面给出定理3的应用

定理 4 设 $A \setminus B$ 是 Riesz 空间 E 的理想,则 $A \cap B$ 及 A + B 都 是 E 的理想且

(A+B)/B Riesz 同构于 $A/A \cap B$

证明 易知 $A \cap B$ 是 E 的理想, 设

 $|x| \leq |y|$ 且 $y \in A + B$,则

存在 $a \in A$, $b \in B$, 使得 y=a+b 令

$$a_1 = [x \lor (-|a|)] \land |a|$$
 $\coprod b_1 = x - a_1$

则 | a₁ | ≤ | a | 且

$$b_1 = x - [x \lor (-|a|)] \land |a|$$

= [o \land (x+|a|)] \land (x-|a|)

另一方面,由 $|x| \le |y| = |a+b| \le |a| + |b|$ 知

$$x+|a| \ge -|b|$$

$$x-|a| \le |b|$$

于是 $-|b| \leq 0 \wedge (-|b|) \leq 0 \wedge (x+|a|)$

$$\leq b_1 \leq 0 \lor (x-|a|) \leq |b|$$

即

 $|b| \leq |b|$

由于 $a \in A$, $b \in B$ 且 A、B均是 E的理想,所以 $a_1 \in A$, $b_1 \in B$, 即 $x=a_1+b_1 \in A+B$ 、所以,A+B也是 E的理想。

易知 B是 A+B 的理想, $A\cap B$ 是 A 的理想,从而 (A+B)/B 及 $A\cap B$ 均是 Riesz 空间,对任意的 $a\in A$,有 $a+B\in (A+B)/B$,且 a+B 由 a 唯一确定,令 $T:A\to (A+B)/B$:T(a)=a+B,则 T是 A 到 (A+B)/B 的映射,由于 (A+B)/B 的每一元都具有 a+B 的形式,所以 T是 A 到 (A+B)/B 的满射,易见 T是 A 到 (A+B)/B 的满 Riesz 同态。而且 $KerT=A\cap B$,事实上对任意的 $a\in A\cap B$ 有 T(a)=a+B=B. 所以 $a\in KerT$ 从而 $A\cap B\subset KerT$,另一方面,对任意的 $a\in KerT$,T(a)=a+B=B,从而有 $a\in A\cap B$ 所以 $T\subset A\cap B$ 于是有 $T\subset A\cap B$

由 Riesz 同态基本定理得

 $A/A \cap B$ 与 (A+B)/B Riesz 同构。

参考文献

Luxemburg W A. Zaanen A C. 1971. Riesz Spaces I. Amsterdam: North-Holland. 23 ~107

Schwarz H U. 1984. Banach Lattices and Operators: Teuber-Texte Zur Mathematik Band 71. Leipig:[s.n.]25~29

Wong Y C. 1980. An Introduction to Ordered Vector SPaces. Taiwan:[s.n.]29 ~31

A NOTE ON QUOTIENT RIESZ SPACES

Wang Shi'an Yu Caiyu
(Dept. of Basic Courses, South China Agr. Univ., Guangzhou, 510642)

Abstract

Reports a characterization of a quotient space E /E₀of Riesz space E with respect to some downward directed Sudspace E₀ finding it to be still a Riesz a Space. Riesz homomorphisms between Riesz space were also studied.

Key words Riesz space; ideal; quotient space