万强对花生根结线虫发育的影响 及 防 治 效 果

廖金铃 冯志新 (华南农业大学线虫研究室,广州,510642)

摘要 利用室内培养和盆栽试验的方法,研究了万强对花生根结线虫(Meloidogyne arenaria)发育的影响。结果表明:万强对胚胎发育无明显影响,但能延缓孵化时间,减慢线虫胚后发育的速度,减低雌虫的比例。田间小区试验表明:万强有减少土中2龄幼虫数量的作用,并有显著的防病增产效果。增产幅度为19.66%~24.83%。

关键词 万强; 花生根结线虫; 发育; 防治中图分类号 S 482.292

万强(Vydate){甲基氮、氮二甲基-氮-((氨基甲酸甲氨酰)氧化)-1-硫代酰胺化合物},是美国杜邦公司生产的一种具有触杀、胃毒、内吸性的广谱型氨基甲酸酯类杀线剂。国外虽已研究了其对多种根结线虫的防治作用,并对其与南方根结线虫(Meloidogyne incogita)发育的关系作了较系统的报道(Wright et al, 1980)。但此药对花生根结线虫(M. arenaria)发育的影响则未见正式报道。同时,有关万强对国内线虫病的研究也尚未报道。为此,1991~1994年进行了本项研究。下面报道研究结果。

1 材料和方法

1.1 材料

万强(10G)和对照药剂克线磷(Nemacur 10G)分别由美国杜邦公司和德国拜耳公司提供;花生根结线虫采自番禺新造镇严重感病花生植株;供试花生(Arachis hypogaea 粤油511-116)由番禺新造农办提供。

1.2 方法

- 1.2.1 胚胎发育 挑取花生根结线虫的卵囊于培养皿中,经次氯酸钠消毒后,移入 15 mg/L 万强溶液中。在显微镜下选取单细胞卵,用吸管移入凹玻片上,每片 2 卵,重复 10 次。另设无菌水作对照。在室温(平均 25.1 ℃)下培养,观察胚胎发育过程。
- 1.2.2 幼虫孵化 挑取3个大小、颜色相近的卵囊,经次氯酸钠消毒后,将卵移入盛有5mL 药液(5 mg/L,10 mg/L,15 mg/L)的培养皿(d=6 cm)中,加盖,在室温(平均25.1 ℃)下培养,每隔2~3d检查孵出2龄幼虫数量,计算每皿线虫的累积孵化率。
- 1.2.3 胚后发育 取 80 个 h 18 cm, d 10 cm 的塑料盆, 分别装入等量病土。 其中 48 盆用万

¹⁹⁹⁴⁻⁰⁹⁻³⁰ 收稿

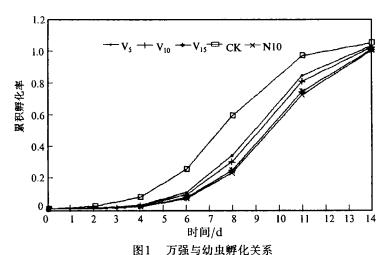
^{*}农业部"八·五"重点课题(1991~1995)

强处理,每盆用量 0.21 g。另设 32 盆不施药作对照,然后,播种花生,置于平均气温 24.2 ℃ 防虫网室中培养,并按常规方法管理。花生出苗后,每隔 2~5 d 拔取花生植株,洗净并剪取根结,用乳酸酚酸性品红染色(Daykin et al,1985),检查线虫在根内发育过程。

1.2.4 田间小区试验 1991 年 8 月 5 日在番禺市新造镇进行。共设 6 个处理,分别为 5 kg/hm², $10 \, \text{kg/hm²}$, $15 \, \text{kg/hm²}$, $20 \, \text{kg/hm²}$ 万强、 $45 \, \text{kg/hm²}$ 克线磷及不施药对照。每处理 3 个重复,共计 18 小区,每小区 A 20 m²。拉丁方排列。定期检查土中 2 龄幼虫、根结数量及花生生长发育和产量的情况。

1.2.5 试验结果统计 幼虫累积孵化率利用逻辑斯蒂曲线进行动态分析。 $y=1/(1+e^{a^{-bx}})$ 其中 y 为累积孵化率, x 为时间。Logistic 曲线拟合利用线性化方法进行。其它均数比较利用邓肯氏法。

2 试验结果


2.1 万强对花生根结线虫发育的影响

2.1.1 对胚胎发育的影响 根据凹玻片培养试验结果,15 mg/L 的万强,对花生根结线虫胚胎发育的影响,与对照相比无明显差异。

2.1.2 对幼虫孵化的影响

发育初期和发育末期时间(如表 1)。可见,万强处理后,幼虫孵化明显受到抑制,到达孵化初期时间为4.816 9~5.387 7 d,到达孵化末期时间,为13.3155~14.119 5 d。而对照的孵化初期和末期时间则分别为3.363 2 d和11.989 8 d。所以,万强延缓了幼虫的孵化

时间。

以线性化方法拟合各处理的逻辑斯谛曲线,结果如图 1,并得到

V₅ V₁₀ V₁₅分别代表 5 mg/L,10 mg/L,15mg/L, 万强,N 为 10 mg/L 克线磷,CK 为对照。

表 1 各处理 Logistic 曲线分析结果

处 理(1)	a	b	相关系数 $r^{(2)}$	发育初期时间/d	发育末期时间/d
V_{5}	6.282 1	0.692 9	0.909 7**	4.8169	13.315 5
V_{10}	6.4129	0.687 5	0.9164**	5.045 2	13.611 2
V_{15}	6.578 0	0.6744	0.922 7**	5.387 7	14.119 5
N	6.6053	0.6690	0.926 1**	5.471 9	14.274 1
CK	5.240 3	0.682 6	0.830 2*	3.363 2	11.989 8

(1) 同图 1. (2) ** 表示极显著 ($\alpha = 0.01$), *表示显著 ($\alpha = 0.05$)

2.1.3 对胚后发育的影响 万强对花生根结线虫胚后发育具有一定的影响。在平均气温 24.2 ℃条件下,万强处理组线虫从 2 龄幼虫到雌虫产卵约需 38 d, 其中 2 龄幼虫经蜕皮进入 3 龄幼虫约需 21 d,3 龄幼虫经 4 龄幼虫及蜕皮进入雌虫阶段约需 9 d, 再经 8 d 左右进入产卵期。而对照组约需 30 d, 进入产卵期,其中 2 龄幼虫经蜕皮进入 3 龄幼虫期约需 14 d,3 龄幼虫及 4 龄幼虫经蜕皮进入雌虫约需 10 d, 再经 6 d左右进入产卵期。可见,施用万强后,根结线虫在花生根内发育进度减慢,且主要是对 2 龄幼虫和成虫的影响,而对 3 龄、4 龄幼虫的影响不大;同时,试验还表明,施用万强后,雌性比降低。出现产卵雌虫时调查的雌性比为:万强处理 40%,而对照 59%。

2.2 万强对花生根结线虫的防治效果

2.2.1 对土中 2龄幼虫数量的影响 小区试验表明: 万强能较为明显地降低土中 2龄幼虫的数量。从表 2 可看出,施药后 43 d 调查,不同剂量万强处理区,2龄幼虫数量减退率为 33.3% ~ 99.0%,而对照则增加 112.5%。施药 81 d 后调查,施用万强处理虫数虽已有上升,但比对照区上升慢。

表 2 刀 强对工中 2 段 初 虫 致 重 的 影 啊 (食 商 ,1991)							
处 理(1)	8月5日虫数(2)	9月18日		10月26日		11月22日	
	(施药前)	虫数	减退率/%	虫数	减退率/%	虫数	减退率/%
V _a	93	8	91.4	234	- 152.7	5	94.6
V_{b}	22	8	63.6	191	-768.2	4	81.8
V_c	6	4	33.3	162	-2600.0	1	83.3
V_d	102	1	99.0	122	-19.2	2	98.0
N	15	1	93.3	177	-1080.0	5	66.7
CK	8	17	-112.5	284	-3 450.0	7	12.5

表 2 万强对土中 2 龄幼虫数量的影响(番禺, 1991)

 $(1)V_a,\,V_b,\,V_c,\,V_d,\,$ 分别代表万强 $5\,kg/hm^2,\,10\,kg/hm^2,\,15\,kg/hm^2$ 和 $20\,kg/hm^2,\,N$ 为克线磷 $45\,kg/hm^2,\,CK$ 为对照。表 $3,4\,$ 同。

2.2.2 对花生发病指数的影响 施用万强后,能明显降低花生根结线虫病的发病指数。由表3看出,不同剂量万强处理,50d后调查,发病指数都明显地比对照区低,防治效果为55.8%~91.3%。

处 理 ^①	50 d 后调	l査发病指数/% ^⑴	防治效果/%	
V_a	26.1	bc	61.5	
V_b	30.0	ь	55.8	
V_c	16.2	С	76.1	
V_{d}	5.9	d	91.3	
N	38.6	ь	43.1	
CK	67.8	a		

表 3 万强对花生根结线虫病发病指数的影响(番禺, 1991)

⁽²⁾表中虫数为 100 mL 土中虫数。

⁽¹⁾ 用邓肯氏法检验差异显著性(5%水准),同一项目字母相同者表示差异不显著,表 4同。

2.2.3 对花生生长发育及产量的影响 田间小区试验表明,施用万强有明显的促进生长和增产作用。表现为施药区花生生长发育良好,植株健壮,叶色浓绿,根系发达,植株较高,果针数多,饱果数增多,瘪果数比例减少。除剂量 5 kg/hm² 外,其它剂量万强处理增产为19.66% ~ 24.83%。

L) vini	TIT I de la de miles de	/*	产量		
处 理	平均株高/cm	小区产量/kg	增产率/%		
V_a	22.0 c	2.85 c	-1.72		
$\mathbf{V}_{\mathtt{b}}$	23.1 bc	3.62 a	24.83		
V_c	22.5 bc	3.47 ab	19.66		
V_{d}	25.8 a	3.61 a	24.48		
N	24.2 ab	3.28 b	13.10		
CK	21.3 c	2.90 с			

表 4 万强对花生株高及产量影响(番禺,1991)

3 结论与讨论

试验表明: 万强对花生根结线虫的胚胎发育无明显影响, 但延缓幼虫孵化时间, 减慢胚后发育的速度, 减低雌性线虫比例。同时, 亦有明显的防病增产效果。这一研究结果, 为万强防治花生根结线虫病提供了重要理论依据, 并为国内引进万强提供了有用的参考。

Evans 等(1982),Wright 等(1980)分别报道了万强对马铃薯金线虫 (Globodera rostochi-ensis)和南方根结线虫幼虫孵化有较强的抑制作用。本文的结果与他们的报道是一致的。从万强延缓幼虫孵化时间这一事实,我们可以认为,施用万强可以使花生感病期(新根发生期)侵染性 2 龄幼虫数量减少,从而使得花生感染根结线虫的机会减少。

万强对花生根结线虫胚后发育的抑制作用,主要表现在对 2 龄幼虫和成虫的影响,而对 3 龄和 4 龄幼虫则无明显作用。Evans 等(1973) 认为药剂抑制发育的作用主要是因为线虫正常的取食活动受到损害,而 Wright 等 (1982) 则认为取食过程不但是杀线剂的一个重要耙标,同时也是决定药剂吸收率的一个重要因子。 2 龄幼虫和成虫期都是取食的活跃时期,因而吸收药物较多,抑制作用明显;而 3 龄、4 龄时期幼虫不取食 (de Guiran et al, 1979);表面积:容积比率较小,并且表皮上有 2 龄幼虫蜕皮留下的"额外"表皮,因而吸收药物较少(Wright et al, 1982)。所以万强对 3 龄幼虫和 4 龄幼虫发育影响不大。此外,万强处理后,雌性比降低,这与 Stephan 等 (1983) 研究万强对北方根结线虫 (M.hapla) 影响的结论相似。

田间小区试验表明,施用万强后,在花生的整个生长季节内,土中2龄幼虫数量减少,发病指数明显减轻,从而有利于花生生长,达到较好的防病增产效果。同时,该药由于兼有杀虫杀螨作用,对人畜毒性低,因此,在生产上有一定的应用开发价值。

使用剂量 5 kg/hm², 虽也能理想地控制土中 2 龄幼虫的数量, 但无增产效果, 故初步认为10 kg/hm² 使用剂量较为合适。

致谢 王振中教授对本文提出宝贵意见;88级植保本科生田梅、叶燕华参加部分工作,在此深表感谢!

参考文献

- Daykin M E, Hussey R S.1985. Staining and histopathological techniques in nematology. In: Barker K R, Carter C C, Sasser J N, eds. An Advanced Treatise on *Meloidogyne* Vol. II: Methodology. North Carolina: North Carolina State University Graphics, 39 ~ 48
- De Guiran G, Ritter M.1979. Life Cycle of *Meloidogyne* Species and factors influencing their development. In: Lamberti F, Taylor C E, eds. Root-Knot Nematodes (*Meloidogyne* Species): Systematics, Biology and Control. London & New York: Academic Press, 173 ~190
- Evans A A F, 1973. Mode of action of nematicides. Annals of Applied Biology, 75: 469 ~ 473 Evans S G, Wright D J. 1982. Effects of the nematicide oxamyl on life cycle stages of Globodera rostochiensis. Annals of Applied Biology, 100:511 ~ 519
- Stephan Z A, Trudgill D L. 1983. Effect of time of application on the action of foliar sprays of oxamyl on *Meloidogyne hapla* in tomato. Journal of Nematology, 15(1):96 ~ 101
- Wright D J, Blyth A R K, Pearson P E. 1980. Behaviour of the systemic nematicide oxamyl in plants in relation to control of invasion and development of *Meloidogyne incognita*. Annals of Applied Biology, 96:323 ~ 334

EFFECT OF OXAMYL ON THE DEVELOPMENT OF THE NEMATODE, Meloidogyne arenaria

Liao Jinling Feng Zhixin
(Dept. of Plant Protection, South China Agr. Univ., Guangzhou, 510642)

Abstract

Effect of oxamyl on the dvelopment of root-knot nematode, *Meloidogyne arenaria* was studied in the greenhouse. The results showed that oxamyl could not signifi—cantly affect the embryonic development, but delay larva to hatch and prolong the post-embryonic development, against control; and that oxamyl could also reduce the proportion of female. The field plot experiment on control to the peanut root-knot nematode disease showed that oxamyl reduced the 2nd-stage juvenile population density in the soil, and resulted in significant effect on control of the disease and the yield increment of peanut. Under the application dosage of 10 kg/hm², 15 kg/hm², 20 kg/lm², respectively, the yield increased by 19.66% ~ 24.83%.

Key words oxamyl; Meloidogyne arenaria; development; control