利用水生昆虫评价南昆山溪流的水质:

童晓立 胡慧建 陈思源 (华南农业大学昆虫生态研究室,广州,510642)

摘要 1994年9月,在南昆山溪流上设置3个样点,用综合定性取样法,共采获水生昆虫8目,41科,67属,104种,共计955头。其中:毛翅目12科,17属,30种;蜉蝣目9科,18属,30种; 襀翅目2科,8属,12种;蜻蜓目8科,12属,14种;双翅目4科,4属,9种;鞘翅目3科,4属,4种;半翅目2科,2属,2种;广翅目1科,2属,3种。利用Shannon-Weiner多样性指数,EPT种类丰富度,生物指数和科级水平生物指数等4种评价方法评价3样点的水质,结果表明3样点的水质均为清洁水体。

关键词 水生昆虫;水质;生物学评价

中图分类号 Q968.8; X832

在自然水域中生存着大量的水生生物,它们与水环境有着错综复杂的相互关系。不同种类的水生生物对水体污染的适应能力不同,有的种类只适宜在清洁水中生活,而有些水生生物则可以生活在污染水中。水生生物的存亡标志着水质变化的程度。因此水生生物可作为水体污化的指示生物。通过水生生物的调查,可以评价水体被污染的状况。这方面的研究工作在国外至少已有50年的历史(Morse et al,1994)。而我国自80年代初才陆续开展这方面的研究,以浮游生物,环节动物和软体动物等为主要研究对象(刘保元等,1981;杞桑等,1982;杨潼等,1986;任淑智,1991)。作为底栖无脊椎动物主要类群之一的水生昆虫,由于具有个体较大,易于鉴定,寿命较长,活动能力和范围较小,独特的呼吸方式,对环境变化比较敏感等特点,在国外广泛被用来监测和评价水质,成为水质生物监测的主要手段之一(Morse et al,1994)。但国内利用水生昆虫监测和评价水质的研究不多,仅杨莲芳等(1992)利用水生昆虫对九华河水质进行过评价。

南昆山位于北回归线上、生物资源相当丰富、也是广东省的旅游胜地。我们在开展南

昆山水生昆虫资源调查的同时, 利用水生昆虫,通过几种水质生物学评价方法,于1994年9月对南昆山溪流的水质进行了评价。

1 研究方法

1.1 采样点生境简述

1994年9月,在南昆山水系的3级支流上设置了3个采样点(图1)。下坪河流经南昆山镇,在

1994-12-05 收稿

*华南农业大学校长基金资助课题。

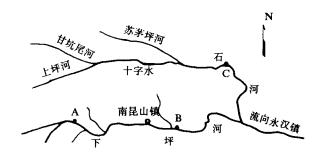


图 1 采样点示意图 A, B点间距约 1.5 km; B, C点间距约 2.0 km.

距离居民区约 500 m 的上游设置 A 点,以该点作为 B 点对照点。A 点的水流湍急,河底 以砾石为主。B点位于下坪河下游,距南昆山镇约200m,水流较平缓,砾石底质。C点 位于石河上游,远离居民区,受人为干扰较少,河面较 A 和 B 点宽,水流湍急,砾石底 质。

1.2 采样方法

各样点的取样,采用美国环境保护局推荐的综合定性采样法(Lenat 1988; Plafkin et al, 1989; Morse et al 1994)。每样点用水网捕2网,一网在水流较急处,另一网在水流缓 慢处; 用 D 形网沿岸边捕 20 m; 并随机检出水中石块, 落叶上的昆虫标本约 20 min。 采获的 昆虫标本在野外立即检出,保存于 75% 的酒精中。

1.3 水质生物学评价方法

1.3.1 应用 Shannon - Weiner 多样性指数法 Shanon - Weiner 多样性指数公式为:

$$H' = -\sum_{i=1}^{S} (n_i/N) \log 2 (n_i/N)$$

式中 H' 为样品中种的多样性指数; S为样品中的种类数; N为样品中生物的个体总 数; n_i 为第i种的个体数。就底栖动物而言,多样性指数的评价标准为:H'=0,严重污 染;H'<1,重污染; $H'=1\sim3$,中污染;H'>3,清洁(国家环保局《水生生物监测手册》 编委会,1993)。本文中的样品均鉴定至科、属,并区分到种。

1.3.2 应用 EPT 种类丰富度法 目 前,美国、加拿大等国常以耐污能力最 差的 3大类群,即蜉蝣目 (Ephemeroptera)、襀翅目(Plecoptera)和毛翅目 (Trichoptera) (简称 EPT) 种类的丰 富度来表示水体受污染的程度(Morse et al,1994)。 其评价标准见表 1。

1.3.3 应用生物指数 (Biotic Index)

表 1 EPT 种类丰富度评价水质标准

水质状况	山区	丘陵地区	沿海平原	
极清洁	>41	>31	>27	
清 洁	32~41	24~31	21 ~27	
尚清洁	22~31	16~23	14~20	
中污染	12~21	8~15	7~13	
严重污染	0~11	0~7	0~6	

法(Lenat 1993; Morse et al, 1994) 生物指数的公式为: $BI = \sum_{i=1}^{s} n_i t_i / N$. 式中 N 代表样品

中属或种的个体总数,ni代表第i属或种的个体数,ti代表第i属或种的耐污值。耐污值的 范围为 0~10, 数值越大,表示耐污能力越强。本文所采用的耐污值是根据 Lenat(1993) 得 来的。生物指数的评价标准为: <4.18, 极清洁: 4.17~5.09, 清洁; 5.10~5.91, 尚清 洁;5.92~7.05, 中污染; >7.05 严重污染。

1.3.4 应用科级水平生物指数法 (Family-level Biotic Index)简称 (FBI) 科级水平生物 指数(FBI)是 Hilsenhoff于 1988年提出,并提供了 10 目 69 科的耐污值,该指数是目前美 国环境保护局推荐使用的指数之一 (Plafkin et al, 1989)。该指数的公式为:

 $FBI = \sum_{i=1}^{N} N_i T_i / N$ 。 式中 N 代表样品中科的个体总数, N_i 代表第 i 科的个体数, T_i 代表 第 i 科的耐污值。由于 Hilsenhoff 将评价标准划分过于细致 *, 本文作者将其合并为 5 个

^{*: 0.00~3.75,} 最清洁; 3.76~4.52, 很清洁; 4.26~5.00, 清洁; 5.01~5.75, 一般;

^{5.76~6.50,} 轻污染; 6.51~7.25, 中污染; 7.26~1.00, 严重污染.

等级: <4.25, 极清洁; 4.26 ~ 5.00, 清洁; 5.01 ~ 5.75, 一般; 5.76 ~ 7.25, 污染; >7.26,严 重污染。

2 结果与讨论

2.1 水生昆虫群落的组成及特点

经统计,3 个取样点共采获水生昆虫 8 目,41 科,67 属,104 种,共计 955 头(表 1)。其 中,蜉蝣目、毛翅目和襀翅目三大敏感类群的种类占总类群的69%,个体数占总个体数的79%。

=	科		属		种	
	数量	比例/%	数量	比例/%	数量	比例/%
E翅目(Trichoptera)	12	29.27	17	25.37	30	28.85
蜉蝣目 (Ephemeroptera)	9	21.95	18	26.87	30	28.85
责翅目 (Plecoptera)	2	4.88	8	11.94	12	11.54
清蜓目 (Odonata)	8	19.51	12	17.91	14	13.46
双翅目 (Diptera)	4	9.76	4	5.97	9	8.65
消翅目 (Coleoptera)	3	7.32	4	5.97	4	3.85
半翅目 (Hemiptera)	2	4.88	2	2.99	2	1.92
广翅目 (Megaloptera)	1	2.44	2	2.99	3	2.88

表 2 各目水生昆虫科、属、种的数量及比例

四种水质生物学评价方法对各样点水质的评价 2.2

由表 3 可见, 4 种方法评价水质结果基本吻合, 仅在 B 点上水质评价的结果略有差异。 按多样性指数法评价,3个样点的水质均属清洁,但 B 点的指数值显著低于 A,C 点,水质的 最佳点位于 A,C 点; 按 EPT 丰富度法评价, A,C 点属于清洁水质, B 点水质为尚清洁; 按生 物指数法评价, A,C 点的水质为极清洁, B 点水质为清洁; 用科级水平生物指数法评价, 3 个 样点的水质均属极清洁。综上所述,评价结果表明3个样点的水质均属清洁。但从表3中 可看出,B 点与其对照点 A 点相比,无论采用哪种评价方法,B 点的水质清洁度均比 A 点 低。在我们采获的标本中, A,C 两点共有的一些对水质特别敏感的类群, 如双翅目的网蚊科 (Blephariceridae), 毛翅目齿角石蛾科 (Odontoceridae)的裸钩石蛾属 (Psilotreta),原石蛾 科 (Rhyacophilidae)的原石蛾属 (Rhyacophila),舌石蛾科 (Glossosomatidae)的舌石蛾属 (Glossosoma), 蜉蝣目小裳蜉科 (Leptophlebiidae)的 Habrophlebia 属等等,在 B 点未发 现。 而 B 点却出现了 A, C 点没有的一些耐污能力较强的类群,如蜉蝣目四节蜉科 (Baetidae)的 Cloeon 属,短丝蜉科 (Siphlonuridae),细蜉科 (Caenidae)的 Caenis 属等等。 这些类群的耐污值在 7.0 以上(Hilsehoff,1988;Lenat,1993)。说明南昆山镇排人下坪河的

表 3 各样点的水质状况										
评价方法	A点		B点		C点					
	指数值	水质状况	指数值	水质状况	指数值	水质状况				
多样性指数	5.03	清洁	3.74	滑洁	4.83	清洁				
EPT 丰富度	38	清洁	29	尚滑洁	34	清洁				
生物指数	3.07	极清洁	4.35	清洁	2.42	极清洁				
科级水平生物指数	3.11	极清洁	3.81	极清洁	2.63	极清洁				

生活污水已对下游的水生昆虫群落的结构和组成产生了影响。

2.3 四种水质生物学评价方法的比较

多样性指数由于以生物分类单位为基础,适用范围广,适用于各种水体中的各类水生生物群落,因此在水质生物学评价中经常用到该指数。但是多样性指数,仅仅反映群落的结构而不能反映群落的组成,而且对稀有种的反应不灵敏。当耐污种增多或耐污种替代敏感种时,指数 H'也会增大或变化不大,有时对水质的评价可能会比实际值偏高(杞桑等,1982;杨莲芳等,1992)。本文也得出类似的结果。EPT丰富度评价法,以蜉蝣目, 裱翅目,毛翅目 3 个敏感类群的种类数作为评价标准,方法简单易行,适用于水流湍急和石砾河床的山区河川,在水流平缓泥沙底质的平原河流,则效果不好。生物指数评价法既考虑虫体本身的耐污能力的差异,又考虑种的个体数,增加了评价的准确性,是一个比较理想的评价方法,但目前我国还没有一套符合我国国情的水生昆虫耐污值,而只能借鉴国外的资料。科级水平生物指数(FBI)评价法的优点简便、快速、省力、省时,在野外现场就能完成评价工作。样品只需鉴定至科,即使未经分类学专业训练的工作人员,也能很快掌握。因此特别适用于我国中、小河流的水质普查工作,是一个值得推广使用的快速评价方法。在科级水平生物指数中,其科的耐污值是一个平均值,因此,在清洁水体中,FBI值比BI值略高,而在污染水体中,FBI值比BI值略偏低(Hilsenhoff, 1988)。其精确度不及生物指数(BI)。在实际应用时,最好能结合生物指数法一起评价。

参 考 文 献

刘保元,王士达,王永明,等.1981. 利用底栖动物评价图门江污染的研究.环境科学学报,1(4): 337~348

任淑智.1991. 京津及邻近地区底栖动物群落特性与水质等级.生态学报,11(3):262~268

杞桑,林美心,黎康汉.1982.用大型底栖动物对珠江广州河段进行污染评价.环境科学学报, 2(3):181~189

杨莲芳,李佑文,戚道光,等.1992. 九华河水生昆虫群落结构和水质生物学评价. 生态学报,12 (1): 8~15

杨 潼, 胡德良. 1986. 利用底栖大型无脊椎动物对湘江干流污染的生物学评价. 生态学报, 6(3): 262~274

国家环保局《水生生物监测手册》编委会.1993.水生生物监测手册.南京:东南大学出版社,1~690

Hilsenhoff W L. 1988. Rapid field assessment of organic pollution with a family—level biotic index. J N Am Benthol Soc, 7(1): 65 ~ 68

Lenat D R. 1988. Water quality assessment of stream using a qualitative collection method for benthic macroinvertebrates. J N Am Benthol Soc, 7(3): 222 ~233

Lenat D R. 1993. A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. J N Am Bent hol Soc, 12(3): 279 ~ 290

Morse J C, Yang L F, Tian L X. 1994. Aquatic insects of China useful for monitoring water quality. Nanjing: Hehai University Press, 1 ~ 570

Plafkin J L, Barbour M T, Porter K D, et al. 1989. Rapid bioassessment Protocol for use in streamsand rivers: Benthic macoinvertebrates and fish. Report No. EPA/444/4-89/001, US, EPA. Washington D C

USE OF AQUATIC INSECTS TO EVALUATE WATER QUALITY IN THE STREAMS OF Mt. NANKUN

Tong Xiaoli Hu Huijian Chen Siyuan (Lab. of Insect Ecology, South China Agr. Univ., Guangzhou, 510642)

Abstract

Benthic aquatic insects were sampled by qualitative collection method at 3 sites in the streams of Mt. Nankun, Guangdong Province in September, 1994. Total 955 individuals which belong to 104 species of 67 genera in 41 families under 8 orders of aquatic insects were collected. They can be identified by 30 species of 17 genera in 12 families of Trichoptera; 30 species of 18 genera in 9 fmilies of Ephemeroptera; 12 species of 8 genera in 2 families of Plecoptea; 14 species of 12 genera in 8 families of Odonata; 9 species of 4 genera in 4 families of Diptera; 4 species of 4 genera in 3 families of Coleoptera; 2 species of 2 generain 2 families of Hemiptera; 3 species of 2 genera in one family of Megaloptera. Using Shannon—Weiner diversity index, EPT taxa richness, Biotic index and Family—level biotic index to evaluate water quality of 3 sites in the streams of Mt. Nakun. The resuit shown that the 3 sites had clean water quality.

Key words aquatic inscets; water quality; bioassessment