TPF 树脂增强处理湿法纤维板时留着率测定方法及提高途径的探讨

高振忠 吴方明 (华南农业大学林学院,广州,510642)

摘要 采用三波长 UV 光谱法测定了单宁胶在增强处理湿法纤维板时的留着率;采用正交试验和光谱分析相结合的方法,对纤维浆料的留着率进行了分析和测定,提出了提高留着率的方法、措施;确定了在浆内施加条件下,留着率最佳的合理工艺。

关键词 TPF 树脂; 三波长 UV 光谱法; 湿法纤维板; 增强剂; 留着率中图分类号 TO332.4

TPF 树脂是一种单宁取代苯酚 60% 的单宁 - 苯酚 - 甲醛树脂,以下简称 TPF 树脂或 TPF 胶。我国是从 70 年代才开始单宁制胶的研究。目前仍处于试验阶段,尚未正式工业化生产。经试验证明: TPF 树脂是一种具有与酚醛树脂类似性能,而成本仅为酚醛树脂二分之一,可用于作湿法纤维板增强处理的一种树脂;由于近年来用于制革工业的单宁供大于求,生产单宁胶的单宁来源有保证; TPF 树脂作为湿法纤维板的增强剂,性能优良,成本较低,原料来源广泛。在提高纤维板产品质量的同时,又为单宁的合理利用开辟了一条新路。TPF 树脂用于增强湿法纤维板目前未见成功的报导。以往用树脂增强处理湿法纤维板的主要问题是认为树脂的留着率低,用量少难以达到预定的增强效果;用量多则在提高了产品质量的同时,也提高了产品成本,大大地降低了单位产品的利润。由于树脂的大量流失,对环境也造成了污染。所以,找到一种适当的方法,测定并提高 TPF 树脂在增强处理湿法纤维板时的留着率,就成为 TPF 树脂在湿法纤维板生产应用上首先要解决的问题。本试验探索性地采用三波长 UV 光谱法,对 TPF 树脂增强处理湿法纤维板的留着率进行了测定,并对提高留着率的方法进行了探讨。

1 实验原理

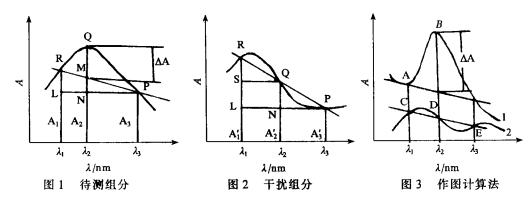
1.1 实验基本原理

TPF 树脂是一种以单宁为主要原料的树脂。单宁是多元酚的衍生物。通常是由相同或相似的多种多元酚的衍生物组成的复杂混合物。落叶松单宁和黑荆树单宁是制作 TPF 树脂的主要原料。属凝缩类单宁。TPF 树脂所用单宁是兴安落叶松单宁。从兴安落叶松树皮抽出物的提取中分离出来的水溶性单宁,通过花青色素反应,「3C-NMR、UV和红外光谱分析等研究方法鉴定,判定兴安落叶松的结构为原花青啶。水溶性单宁的平均聚合度为 8 (孙达旺,1986)。由于落叶松单宁主体具有苯环结构,所以其 UV 谱图必有特征吸收峰存在。

1994-12-30 收稿

1.2 被测物浓度的确定(赵澡藩,1990)

浓度确定的主要依据是 Beer-Lambert 定律。测定时被吸收的人射光份数正比于人射光的份数,正比于光程中吸光物质的分子数目;对于溶液,如果溶剂不吸收,则被溶液所吸收光的份数,正比于光所通过的距离。可用下式表示:


$$A = \log(I_o/I) = a \times b \times c = \log(1/T)$$

式中: A: 吸光度 $T = I/I_o$ (透射比)

Ia: 入射光强度 I: 透过光强度

b:光在溶液中经过的距离,一般为吸收池的厚度

c: 吸收物质溶液的浓度 $a:=A/(b\times c),$ 吸光系数

1. 待测组分 2. 干扰组分

在本试验中,为提高测试精度,拟采用三波长法进行测定。测定原理见图 1,考虑待测组分,从图中可见:

式中:

b: 光程 c: 待测物的浓度

 $\lambda_1, \lambda_2, \lambda_3$: 待测组分吸收曲线上3个波长

 $a_{\lambda_1}, a_{\lambda_2}, a_{\lambda_3}$: 分别为 3 个波长处的吸光度系数

由(1)式可知, ΔA 值与待测组分的浓度成正比,可用于测定浓度。考虑干扰组分见图2,如果在所选的三波长处,干扰组分吸收曲线上的 3 点恰在一条直线上,此时

$$\Delta PQN \sim \Delta QRS$$
 $\therefore PN/QS = QN/RS$ $\therefore PN = n$ $QS = m$ $QN = A'_2 - A'_3$ $RS = A'_1 - A'_2$ 代人上式得: $n/m = (A'_2 - A'_3)/(A'_1 - A'_2)$ $A'_2 - (nA'_1 + mA_3)/(m + n) = 0$ 定义 $\Delta A = A_2 - (nA_1 + mA_3)/(m + n)$ 可见此时对干扰组分来说,其 $\Delta A' = A'_2 - (nA'_1 + mA'_3)/(m + n)$

即此时干扰组分的 $\Delta A'$ 值为零,也就是说可以使待测组分浓度值和干扰组分浓度无关。由此可见,只要在干扰组分的吸收曲线上能找到在同一条直线上的 3 个点,其对应的波长处测得的混合物的吸光度,由于干扰组分此时 $\Delta A'$ 值为零,与混合物待测组分浓度成正比。所以可以消除干扰进行测定。

1.3 三波长确定的方法(图 3)

3 个波长可以用作图法加以确定。其选择方法为: 先选待测组分吸收曲线上吸光度差别较大的2个波长(如1个峰、1个谷)作为 λ_1 和 λ_2 (图中A和B点,这样可使干扰组分的 Δ A'值近似为零)。粗选得出 3 个测定波长。然后配制干扰组分浓度不同的溶液 3 个,以求得使 Δ A'值为零的那个A3值所对应的波长 λ_3 。本试验采用的就是这种方法。

2 实验准备

2.1 特征吸收峰的确定

将预先制好的 TPF 树脂配制成下列浓度的溶液: 0.05, 0.1, 0.5, 1, 5, 10, 20, 40, 80, 100, 200, 400(单位: 1/1 000 000) 然后分别在 UV 光谱仪上测定其吸收曲线。实验得出,其特征吸收峰在 250~290 nm 之间,特征吸收峰位移的主要原因认为是由于 pH 值的变化而产生的红移和蓝移,从结果分析未见 pH 值对特征吸收峰强度产生明显的影响,数据回归后线性关系良好(试验中均以制胶用水作为背景和稀释水)。特征吸收峰附近的峰形良好。确定在 250~ 290 nm的吸收峰为特征吸收峰。

2.2 试样准备

实验模拟工厂实际情况进行。首先将胶稀释成 5% 浓度的水溶液,石蜡乳化 5% 浓度的乳液,制作配方如下 (高木纯等,1964): 石蜡 100 份; 油酸 15 份; 氨水 7.5 份; 1 次乳化水 7.5 份; 2 次乳化水 15 份; 1 次稀释水 55 份; 2 次稀释水 1 900 份。成型过程模拟生产实际情况。特制一个直径 5 cm 的圆桶,置于一 18 目筛网上,网下滤液用烧杯盛起,沉淀后倒人编号的试管。同时进行空白试验。得网下滤液作为测该样的背景。测定中有关参数为: 板坯厚 8 ± 1 cm; 沉淀时间 5 s; 石蜡用量 1%; 浆料含水率 58%; 所用稀释液是调到—定 pH 值的硫酸铝溶液。成型操作的步骤是: 先将标准浓度浆料备好,称定量的石蜡乳液和已配好的TPF 树脂, 先倒人石蜡, 后倒 TPF 树脂搅拌 5 s 后, 倒人小桶中成型。

2.3 试验仪器、材料

试验材料: 纤维浆料, 石蜡, 硫酸铝等均取自某工厂。 所有测试均在 BACKMAN DU-7UV 光谱仪上完成。

2.4 方案设计

由于影响湿法纤维板增强处理时留着率的因素较多,如:树脂种类、树脂分子量和分子量分布、浆料质量、浆料浓度、浆温、浆料 pH 值、施胶量、胶的沉淀时方法等等诸多因素,都影响着 TPF 树脂的留着率。本实验采用正交试验的方法。根据生产经验,初步选定对留着率影响较大的浆料 pH 值 (B),浆料浓度 (A)和施胶量 (C)等参数,选用 L₉ (3⁴)正交方案进行试验。重复系数为 2。方案设计见表 1,表 2。

表 1 L₂(3)正交试验表头设计

以上 19(0 / 正文以近秋入以 列						
浆浓度	pH 值	施胶量	空列			
(A)/%	(B)	(C)/%	(D)			
1.0	4.5	0.3				
1.5	5.0	0.7				
2.0	5.5	1.1				
	(A)/% 1.0 1.5	1.0 4.5 1.5 5.0	(A)/% (B) (C)/% 1.0 4.5 0.3 1.5 5.0 0.7			

表 2 L _x (3 ⁴) 正交试验方案设计							
试验号	A/%	В	C/%	D			
1	1(1.0)	1(4.5)	1(0.3)	1			
2	1(1.0)	2(5.0)	2(0.7)	2			
3	1(1.0)	3(5.5)	3(1.1)	3			
4	2(1.5)	1(4.5)	2(0.7)	3			
5	2(1.5)	2(5.0)	3(1.1)	1			
6	2(1.5)	3(5.5)	1(0.3)	2			
7	3(2.0)	1(4.5)	3(1.1)	2			
8	3(2.0)	2(5.0)	1(0.3)	3			
9	3(2.0)	3(5.5)	2(0.7)	1			

3 结果及讨论

3.1 试验结果见表 3、表 4、表 5

表 3 正交试验结果

序号	λ/nm	ΔA	R ⁽¹⁾	序号	λ/nm	ΔΑ	R ⁽¹⁾
1	278.5	0.5396	68.25	10	282.0	2.181 4	58.75
2	278.5	0.544 6	67.95	11	280.0	1.028 3	36.35
3	280.0	1.104 5	70.84	12	280.0	1.026 0	36.80
4	280.0	1.1040	70.85	13	280.0	0.993 5	83.31
5	282.0	1.6377	69.03	14	280.0	0.991 1	83.35
6	282.0	1.644 3	69.91	15	280.0	1.118 9	31.07
7	277.0	1.3058	67.17	16	280.0	1.122 0	30.88
8	277.0	1.307 1	67.13	17	277.0	1.792 4	54.93
9	282.0	2.170 8	58.95	18	277.0	1.800 0	54.74

(1) R 代表留着率

表 4 不同波长下工作曲线

λ/nm	相关系数	回归方程(×10 ⁻⁴)
273.0	0.999 7	$C = 2.612 \ 1 \times 10^{-3} + 21.370 \ 8\Delta A$
277.0	0.999 9	$C = 4.576 \ 4 \times 10^{-2} + 17.015 \ 0\Delta A$
278.0	0.999 9	$C = 4.734 \ 7 \times 10^{-2} + 17.600 \ 7\Delta A$
278.5	0.999 9	$C = 5.810 \ 0 \times 10^{-2} + 17.644 \ 1\Delta A$
280.0	0.999 9	$C = 6.636 \ 9 \times 10^{-2} + 18.479 \ 5\Delta A$
282.0	0.999 9	$C = 8.607 5 \times 10^{-2} + 20.800 7 \Delta A$

表 5 试验方差分析结果

名	称	SA	SB	SC	SD
分析	结果	791.10	1 493.84	2 059.05	192.36
显著性	分析	**	***	***	

3.2 分析和讨论

从试验结果分析可以得出: (1)用三波长 UV 光谱法测定 TPF 树脂增强湿法纤维板 的平均留着率数值,与以往文献报导数值相比较,结果适中;(2)增强剂的留失率并不随

着施胶量的提高而提高;(3)影响留着率 值的主次顺序为:施胶量、pH值、浆料浓 度; (4)3 个因素都对留着率有着显著的 影响; (5)在试验条件下的平均留着率为 60.01%;(6) 从以上正交试验得出的合理 施加工艺为 A1-B1-C3 即浆浓度为

表	6 甲因素	试验万条	
水平	1	2	3
破乳时间/s	5	10	20
温度/ ℃	20	40	60
浆料浓度/%	1.0	1.5	2.0

1%, 浆料 pH 为 4.5; 施胶量为 1.1% 条件下, 可以得到最佳的增强剂的留着率。 留着率 应在80%以上。浆料对为进一步研究各因素对纤维浆料留着率的影响,我们又进行了单因 素试验,试验选择对浆料留着率影响较大的破乳时间,浆料温度,浆料浓度等因素作了进一步 试验。试验方案见表 6, 试验结果见表 7。

表 7 单因素试验结果

序号	λ/nm	ΔΑ	$(C \times 10^{-6})$	R/%	序号	λ/nm	ΔΑ	$(C \times 10^{-6})$	R/%
Sı	277.0	0.717 6	12.232 8	80.75	R.	278.5	1.050 3	18.600 2	73.43
S_2	277.0	0.713 6	12.186 9	80.78	R,	273.0	1.134 5	24.747 4	64.65
S_3	278.0	0.750 5	13.256 6	81.60	R ₆	273.0	1.117 5	23.884 5	65.88
S_4	278.0	0.743 7	13.136 9	81.23	n ₁	278.0	1.051 9	18.561 4	73.48
S_5	278.0	0.763 1	13.478 4	82.52	n ₂	278.0	1.053 1	18.582 6	73.45
S ₆	278.0	0.761 8	13.455 5	82.59	n ₃	278.0	0.949 6	16.760 9	76.06
R_1	278.0	0.935 7	16.516 3	76.40	n ₄	278.0	0.958 6	16.743 3	76.08
R,	278.0	0.949 1	16.752 1	76.70	n ₅	278.0	0.868 6	15.335 2	78.09
R_3	278.5	1.050 5	18.603 7	73.42	n ₆	278.0	0.846 3	15.259 6	78.20

从单因素试验得出,除温度外,其余二因素对留着率无明显影响。在浓度变大时,留 着率略有提高。所以考虑实际生产情况, 合理的工艺条件应是 $A_1 - B_1 - S_1 - R_1$ -N, 为好。其实际留着率均可达80% 以上。为保证试验结果的可靠性,又进行 了验证试验,结果见表 8。

表 8 验证试验结果

 $\Delta A = C(\times 10^{-6}) = R/\%$ 称 λ/nm TPF 树脂 278.0 0.217 7 3.749 9 87.5

结 论

TPF 树脂是一个较新的胶种,作为湿法纤维板的增强剂,具有和酚醛树脂几乎相同的 增强效果,通过对 TPF 树脂增强处理湿法纤维板留着率测定方法及提高留着率途径的研究, 表明对 TPF 树脂增强处理湿法纤维板时施加方法的改进,在实验室条件下,可以将树脂的 留着率提高 27.49%。这种增强剂及这条施加工艺路线可以降低湿法纤维板生产成本,提 高产品质量,减少酚类物质的流失,降低对环境的污染。三波长 UV 光谱法有助于试验精度 的提高。这项研究具有明显的经济效益和一定的社会效益。

参考文献

孙达旺.1986. 落叶松树皮单宁组分的研究. 林产化学与工业, 4:1~2

高木纯,河口昌德.1964. 湿式纤维板制造.木材学会志,9:97

赵藻藩.1990. 仪器分析.北京: 高等教育出版社,41

STUDY ON THE TECHNOLOGY OF RETENTION RATE DETERMINATION AND IMPROVED METHOD FOR TPFR STRENGTHENING OF WET-PROCESSED FIBERBOARD

Gao Zhenzhong Wu Fangming
(Forestry College, South China Agr. Univ., Guangzhou, 510642)

Abstract

This paper deals with a technology for raising the retention rate during the strengthening of wet-processed fiberboard with TPFR (Tannin-Phenol-Formaldehyde Resin). Based on the results of three-wave-length UV spectrum analysis and orthogonal test, an improved processing method allowing optimum retention is proposed. the new processing technology raises the retention rate by more than 27% on the average.

Key words TPFR; strengthen processing; three-wave-length UV spectrum; wet-processed fiberboard; retention rate