稻秆(¹⁵N)和尿素(¹⁵N)单施或混施时,水稻 对标记氮的吸收与¹⁵N的去向^{*}

黄志武 卢仁骏 朱义贵** 李敏怀*** (华南农业大学植物营养研究室,广州,510642)

摘要 水稻盆栽试验表明,稻秆或尿素做基肥,单独施用时稻秆¹⁵N的当季利用率(<18.6%)低于尿素,但有较高的土壤残留(>45.8%);增加稻秆用量,水稻对其¹⁵N的利用率无显著差异,增加尿素用量则会显著增加水稻对其¹⁵N的吸收。在最高分蘖期,水稻已吸收了其能利用的尿素氮的大部分和稻秆氮的一半左右。两种肥料混合的 C/N 比为15时,尿素用量增加,其¹⁵N水稻利用率变化不大。添加尿素使稻秆¹⁵N的利用率显著增大,而它的土壤残留率和损失率则有所减少;随混合把料用量的增加,稻秆¹⁵N的利用率没有显著的变化,但其损失率则呈现显著下降的趋势。

关键词 水稻; 尿素; 稻秆; ¹⁵N; 氮的平衡帐 中图分类号 S141.4; S143.4

稻秆回田是培肥土壤的重要措施。但稻秆具有较高的碳氮比值,分解时会影响作物吸收氮素,进而影响作物的产量(刘经荣等,1984;黄东迈等,1983;程励励等,1992; Huang et al, 1989; Norman et al, 1990), 这是实施稻秆回田时需注意的问题。

近期一些研究结果表明(吴敬民等,1991;黄志武,1993),稻秆与化学氮肥混合施用时,肥料氮素的去向及其对作物的有效性,与混合肥料的碳氮比有关。碳氮比合理时,它们的混合不会对水稻的产量造成不利的影响。可见研究稻秆单施氮养分的分解及释放特性,并在此基础上研究其与化学氮肥配合施用的合理碳氮比,研究肥料单施或在一定 C/N 比下混施时氮素的去向,对增加稻秆养分释放规律的认识,并为稻秆回田提供理论依据是有现实意义的。

1 材料与方法

水稻盆栽试验于 1991 年晚季在华南农业大学土化系网室内进行。

1.1 供试土壤

赤红壤坡积物发育的水稻土,中壤,取自广州市石牌地区稻田的 $0\sim15$ cm 耕层。pH6.2,有机质 1.0%,全氮 0.055%,全磷 (P) 0.054%,全钾 (K) 0.450%,有效氮,磷 (P₂O₅)和钾 (K₂O)分别这 48.8,66.8 和 31.0 mg/kg。

1.2 供试肥料

1993-12-22 收稿, 1994-12-28 收到修改稿

- *广东省科委科学基金资助项目;
- **现在广东省高明县复合肥厂工作; ***现在广东省清远市农业局工作

非标记肥料: 尿素 (N 46%), 氯化钾 (K_2O 60%), 过磷酸钙 ($P_2O_512.6\%$), 稻秆 (含 N1.17%, 含 C 50.1%)

标记¹⁵N肥料: 尿素(N 46%, ¹⁵N原子百分超 5.13%), 稻秆(含N 0.678%, 含C 42.8%; ¹⁵N原子百分超 3.92%)。

1.3 试验设计与实施

1.3.1 处理 见表 1。

表1 处理方案设计

 序 号	处	理(1)		第盆肥料施用
1	0	,		不施氮肥和稻秆
2	15 N 稻秆 N	95 mg/盆	单施	¹⁵ N稻秆 14 g
3	''N 稻秆 N	95 mg/盆	混施	¹⁵ N稻秆 14 g+非 ¹⁵ N尿素 N 300 mg
4	'5N 稻秆 N	217 mg/盆	单施	¹⁵ N稻秆 32 g
5	¹⁵ N稻秆 N	217 mg/盆	混施	¹⁵ N稻秆 32 g+非 ¹⁵ N尿素 N 700 mg
6	15N 尿素 N	300 mg/盆	单施	¹⁵ N尿素 N 300 mg
7	15N 尿素 N	300 mg/盆	混施	¹⁵ N 尿素 N 300 mg + 非 ¹⁵ N 稻秆 14
8	¹⁵ N 尿素 N	700 mg/盆	单施	¹⁵ N尿素 N 700 mg
9	¹⁵ N尿素 N	700 mg/盆	混施	¹⁵ N 尿素 N 700 mg + 非 ¹⁵ N 稻秆 32 g

⁽¹⁾ 所有混施处理,肥料混合后的 C/N比均为15.

1.3.3 试验实施 每一塑料小桶装土2 kg,即按每公斤土施用过磷酸钙1.0 g和氯化钾0.5 g,再按试验设计添加稻秆和尿素,充分混匀。施肥后,淹水14 d。其后移植水稻(品种:汕优45,秧龄24 d),每盆2穴,每穴3株。水稻最高分蘖期和齐穗期各收获2个重复。其余3个重复在成熟期收获,都采集植株和土壤样本。植株样本(收获时则为稻秆和谷粒两部分)经烘干后称重。

分析土壤和水稻样本的全 N 和 15N (Christianson et al, 1991; Cheng et al, 1966)。

2 结果与讨论

2.1 水稻不同生育期对肥料 ¹⁵N 的吸收

从表 2 数据可以看出,在最高分蘖期,单施尿素处理水稻吸收的 ¹⁵N 占整个生长期 ¹⁵N 被吸收总量的比例 (LNR,即 Labeled – N ratio,以下同)为 90%;单施稻秆,水稻此时吸收的 ¹⁵N 则为其全生长期吸收的 50% 左右,显然是由于稻秆碳氮比值较高 (王维敏,1986),不易分解,其养分需要逐步分解释放之故。至齐穗期,包括稻秆单施在内的各施肥处理 LNR 均达 90%。成熟时,约 70% 被吸收的 ¹⁵N 分布在谷粒中。

两种肥料混施 (C/N 比值 15),在水稻的全生育期,1.添加尿素都有增加稻秆的 ¹⁵N 被水稻吸收和 LNR 的趋势,肥料用量高的处理增幅更大,这明显的与添加氮素营养调节了微生物的活性 (Alexander, 1976),从而促进稻秆的分解有关;2.添加稻秆则会降低尿素 ¹⁵N 被水稻的吸收,肥料用量大的减幅更高,但试验中稻秆仅在肥料低用量时才会降低尿

^{1.3.2} 重复,排列 重复7次,随机排列。

表 2 水稻地上部不同生育期对尿素,稻秆 ¹⁵N 的吸收 ⁽¹⁾

		最高分孽期		齐穗期		成熟期			
处 理						稻 秆		谷 粒	
		mg./盆	%	mg/盆	%	mg/盆	%	mg/盆	%
15N稻秆 N	单施	9.4	9.9	16.6	17.5	4.5	4.8e ^f	13.1	13.8°
95 mg/盆	混施	14.7	15.5	22.3	23.5	5.6	5.9de	18.1	19.1 ^d
¹⁵ N稻秆N	单施	16.4	7.5	29.0	13.2	9.7	4.4 ^f	23.2	10.6 ^r
217 mg/盆	混施	40.7	18.6	59.6	27.2	14.4	6.6d	48.6	22.2d
¹⁵ N尿素N	单施	160.8	53.6	163.8	54.6	42.9	14.3°	123.8	41.3 ^b
300 mg/盆	混施	114.9	38.3	125.1	41.7	39.4	13.1°	97.4	32.5°
¹⁵ N尿素 N	单施	408.4	58.3	473.4	67.6	141.4	20.2ª	321.4	45.9ª
700 mg/盆	混施	280.4	40.1	329.9	47.1	104.2	14.9 ^b	209.4	29.9°

⁽¹⁾表 2 和表 3 中, 最高分享期次 2 次重复,成熟期为 3 次重复平均数;%为吸收或残留的 15 N 占施用 15 N 总量的百分率,右上角字母为邓肯氏多重比较 (P=0.05),纵行有字母相同的表示差异不显著。

素的 LNR, 这有可能归因于该混施处理有较高的稻秆相对用量。

2.2 肥料 N 在土壤中的残留状况

15N尿素N

700 mg/盆

单施

混施

169.0

260.8

表 3 数据表明,单施稻秆或尿素做基肥,植稻一季后,尿素 ¹⁵N 在土壤中的残留较低(<13.2%),而稻秆在土壤中有较高的 ¹⁵N 残留率(>45.8%),这可能与稻秆氮素较难释放而导致水稻吸收比率较少(表 4)有关。稻秆用量高的处理有更大的稻秆 ¹⁵N 残留比例,但增加尿素用量并没有显著增加尿素 ¹⁵N 在土壤中的残留。除此以外,这两者均在最高分蘖期有最大的 ¹⁵N 残留比例。可见,供试土壤对稻秆或尿素作基肥时的 ¹⁵N 表观固定作用在水稻的生长前期已达到高峰,在生长中后期因吸收或损失等因素则有所削弱。

处 理 最高分孽期 齐 穂 期 成熟期 % mg/盆 % mg/盆 mg/盆 % ¹⁵N 稻秆 N 单施 52.2 55.0 50.6 53.3 43.5 45.8b 95 mg/盆 混施 49.3 51.9 40.2 42.4 41.8 44.0° ¹⁵N 稻秆 N 单施 152.3 69.5 139.9 63.9 137.3 62.7ª 217 mg/盆 混施 160.6 73.3 110.7 50.5 112.7 51.4^b ¹⁵N尿素N 单施 44.3 14.8 40.6 13.5 39.7 13.2^d 300 mg/盆 混施 82.6 27.5 73.1 24.4 64.3 21.4°

表 3 标记15N稻秆和尿素 N在土壤中的残留状况

调节 C/N 比值至 15 混合施用肥料,添加稻秆在整个水稻生长期间都引起尿素 N 在土壤中的残留增加,肥料用量高的处理增幅亦高。可以认为,这和稻秆在淹水土壤中分解,对肥料和土壤产生的影响有关(李庆逵,1992;吴敬民等,1991; Lynch et al, 1985; Yoshida et al, 1975),从而有可能使尿素的氮效率下降。与此同时,稻秆 15 N 的土壤残留则有因尿素的添

81.5

162.0

11.6

23.1

83.3

153.4

11.9^d

21.96

24.1

37.3

表 4 标记稻秆,尿素单施或混施植稻 ¹⁵ N 的平衡账 ⁽¹⁾									
处 理		水 稻	水稻吸收		土壤残留		损 失		
		mg/盆	%	mg/盆	%	mg/盆	%		
¹⁵ N稻秆 N	单施	17.7	18.6°	43.5	45.8 ^b	33.8	35.6°		
95 mg/盆	混施	23.7	25.0 ^d	41.8	44.0°	29.4	30.9 ^b		
¹⁵ N稻秆N	单施	32.9	15.0°	137.3	62. 7 *	48.8	22.3°		
217 mg/盆	混施	63.0	28.8 ^d	112.7	51.4 ^b	43.4	19.8°		
¹⁵ N尿素N	单施	166.7	55.6 ^b	39.7	13.2 ^d	89.5	29.8 ^b		
300 mg/盆	混施	136.8	45.6°	64.3	21.4°	94.7	31.b ^t		
¹⁵ N尿素N	单施	462.8	66.1ª	83.3	11.9 ^d	144.0	20.6°		
700 mg/盆	混施	313.6	44.8°	153.4	21.9°	223.1	31.9 ^b		

(1)%为该项目 15 N中施用 15 N总量的百分率,右上角字母为邓肯氏多重比较(P=0.05),纵行有相同字母的表示差异不显著。

加而减少的趋势,肥料用量高的处理稻秆氮的残留在齐穗期后减少越甚。这一现象说明,除了和稻秆养分分解释放的特性有关外,添加尿素促进了与其混合的稻秆的分解和氮素的释放,以及水稻吸收的增加(表 1),从而引起其氮素在土壤残留的减少,这有可能提高稻秆的氮效率。

2.3 稻秆、尿素单施或混施植稻 ¹⁵N 的去向

从表 4 可以看出: (1)稻秆单施做基肥,低用量时 ¹⁵N利用率为18.6%,施用量增加差异不明显,但有下降的趋势;低用量时土壤残留率为 45.8%,施用量增加残留率明显增高;损失百分数,低用量时达 35.6%,施用量增加则损失率显著减少;(2)尿素单施做基肥,低用量时利用率达 55.6%,显著地高于稻秆;残留率只有 13.2%,明显地比稻秆低,损失率 29.8%,也少于稻秆(低用量)。增加尿素用量,尿素 ¹⁵N土壤残留率无显著差别,但水稻的吸收显著增加,而其 ¹⁵N 损失率则明显下降。

稻秆与尿素混合施用后,(1)添加尿素,无论在试验的低用量或高用量的条件下,都显著地增加了稻秆 '5N 被水稻吸收的量,高施用量时增幅更大,几达 1 倍;稻秆 '5N 残留土中的量,低施用量时无显著变化;高施用量时则比单施稻秆的显著减少;稻秆 '5N 的损失量在低用量时,显著减少,而高用量时的减少不显著。说明按 C/N 比值 15 向稻秆配施尿素,既可显著提高稻秆的氮效率,也不会增大氮的损失,该 C/N 比指标是恰当的。(2)添加稻秆,无论在用量高或低的处理均显著地降低水稻对尿素 '5N 的利用率,高用量时尤甚;同时也显著地增加了尿素 '5N 在土壤中的残留率,尿素 '5N 的损失率则有所增加,但仅在肥料高用量时有显著差异。说明按 C/N 比值 15 向尿素配施稻秆,既会降低尿素氮被当季水稻的利用,也增大其损失(高用量时)。可见若仅考虑尿素氮平衡帐,该 C/N 指标是不恰当的,必须进一步研究予以解决。

表 4 数据还表明,稻秆与尿素混合做基肥,若混合肥料的 C/N 比值不变,则其中稻秆 ¹⁵N 或尿素 ¹⁵N 的利用率,在本试验中没有因肥料施用量的增加而有明显的差异。可见,在一定用量范围内,C/N 比是影响肥料利用率的主要因素。而稻秆 ¹⁵N 的损失率则因肥料施用量的增加而显著下降。

参考文献

- 王维敏.1986. 麦秸、氮肥与土壤混合培养时氮素的固定、矿化与麦秸的分解. 土壤学报, 23(2):97~105 刘经荣, 刘永厚, 张德远, 等.1984. 稻草还田对水田土壤肥力和水稻生长的影响. 土壤通报, 15(2):49~53 李庆逵主编.1992. 中国水稻土. 北京: 科技出版社, 235~237
- 吴敬民,许民元,董百舒,等.1991. 秸秆还田效果及其在土壤培肥中的地位.土壤通报,22(5):211~215 黄东迈,高家骅,朱培立,等.1983. 水稻对有机、无机态肥料氮和土壤氮的吸收利用探讨.土壤学报,20 (1):1~10
- 黄志武.1993.稻秆与标记¹⁵N硫铵配合施用对硫铵氮素有效性和水稻生产的影响.土壤学报,30(2): 224~228
- 程励励,文启孝,李 洪,等.1992.稻草还田对土壤氛素和水稻产量的影响.土壤,24(5):234~238
- Alexander M. 1976. Introduction to siol microbiology. 2nd ed. New York: Tohn Wiley & Sons Inc press, 136~137
- Christianson C B. 1991. Use of a peroxide digestion procedure for the determination of the ^{15}N content of plant tissue. Communications in Soil Sci and Plant Analysis, 22:3 \sim 4, $299 \sim 303$
- Cheng H H, Bremner J M. 1966. Denitrification and isotope ratio analysis of different forms of nitrogen in soil:2, A simplified procedure for isotope—ratio analysis of soil nitrogen. Soil Sci Soc Amer Proc, 30:450 ~452
- Huang Z W, Broadbent F E. 1989. The influence of organic residues on utilization of urea ¹⁵N by rice. Fertilizer Reseach, 18:213 ~ 220
- Lynch J M Harper S H T. 1985. The microbial upgrading of straw for agricultural use. Philosophical transaction of the Royal Society of London Ser B, $310:221 \sim 226$
- Norman R J. 1990. Mineralization of nitrogen-15 labeled residues and utilization by rice. Soil Sci Soc Am J, 54:1351~1356
- Yoshida T, Pardre B C Jr. 1975. Effect of fertilizer nitrogen in a Philippine soil. Soil Sci Plant Nutr, 21:281 ~292

¹⁵N ABSORPTION BY RICE AND NITROGEN BALANCE SHEET WHEN SINGLY OR MIXEDLY APPLYING RICE STRAW(¹⁵N)AND UREA(¹⁵N)

Huang Zhiwu Lu Renjum Zhu Yigui Li Minhuai (Lab. of Plant Nutrition, South China Agr. Univ., Guangzhou, 510642)

Abstract

A rice pot experiment showed when ¹⁵N-labeled rice straw or urea was singly applied before seedings transporting, 1. lower ¹⁵N utilization efficiency (NUE, <18.6%) but higher ¹⁵N residual effect in soil (>45.8%) of applied rice straw than those of corresponding values for urea were observed; 2. the increase of rice straw did not significantly change its own ¹⁵N uptake by rice, but contrary result was obtained by increasing urea application; 3. before maximum tillering stage, most of the urea ¹⁵N and about half of the rice straw ¹⁵N it could utilize would already have been absorbed by the rice plant. When both fertilizers were mixed and basely applied in a C/N ratio 15. the NUE of urea did not change much with the increase of urea application while maintaining the fixed C/N ratio; added urea enabled more absorption of rice straw ¹⁵N by rice, but less remained in soil or was lost. Increase of mixed fertilizer did not change the rice straw NUE much, but ¹⁵N loss tend to be lower.

Key words rice; urea; rice straw; nitrogen balance sheet 15N