植物叶片超氧物歧化酶活性 及其从象草叶片的提取

卢少云 郭振飞 李明启

(华南农业大学生物技术学院,广州,510642)

摘要 测定了华南农业大学校园内 18 种常见植物叶片的超氧物歧化酶活性,发现鸡蛋花、白兰花、鸡蛋果、羊蹄甲和象草叶片的酶活性较高,以每g鲜重计大于 400 单位。经过热处理、硫酸铵沉淀和 DEAE—纤维素柱层析等步骤,部分提纯了象草叶片超氧物歧化酶,并研究了部分性质。

关键词 植物叶片; 超氧物歧化酶; 象草中图分类号 0 557.2

超氧物歧化酶(SOD)是一种特殊的金属酶,能催化超氧物自由基 $(O_2^{\frac{1}{2}})$ 发生歧化反应,从而清除 $O_2^{\frac{1}{2}}$ 自由基,是生物体重要的细胞防御系统之一。众多医学研究指出,SOD 具有防御氧毒、抗辐射、防衰老以及防治肿瘤和抗炎等药用功效,因而对 SOD 应用研究颇受重视(袁勤生,1994)。目前,商品 SOD 主要来源于动物血液,富含 SOD 的植物资源有待开发。南京师范大学对植物药、水果和蔬菜 SOD 资源进行了一些调查(吴国荣等,1991; 1994; 陆玲等,1991),罗广华等(1994)对华南地区的部分食用植物 SOD 资源进行过调查。本文对生长在华南农业大学校园的一些常见植物叶片 SOD 活性进行了测定,并探讨了象草叶片 SOD 的提纯和部分性质。

1 材料与方法

1.1 材料

料

供试材料生长在华南农业大学校园或网室栽培。取生长正常的植物成长叶片为材

1.2 SOD 粗酶液制备

将植物成长叶片按每 g 鲜重加入 5 mL 0.05 mmol/L 磷酸缓冲液(pH7.8), 匀浆, 以尼龙布过滤, 滤液于 15 000 r/min 离心 20 min, 上清液定容至 5 mL, 即为 SOD 粗酶液, 用于测定活性。

1.3 SOD 活性测定

参照 Giannopolitis 等(1977)的方法, 以抑制 NBT 光化还原 50%所需的酶量为 1 个 SOD 活性单位。

1.4 蛋白质含量测定

参照 Bradford (1976)方法,以牛血清白蛋白作标准蛋白质。

1996-04-22 收稿 卢少云, 女, 29 岁, 讲师, 学士

2 结果与讨论

2.1 18 种植物叶片 SOD 活性比较

本试验在 1993 年 7~9 月进行, 测定比较了 18 种校园内常见植物叶片 SOD 活性, 并根据蛋白质含量, 计算出比活性(表 1)。

+= #/m 1-h	学 名	酶活性	蛋白质含量	比活性
植物种		/ U	$/\mathrm{mg}^{\circ}\mathrm{g}^{-1}$	$/\times 10^3 \mathrm{U}\mathrm{^{\circ}g}^{-1}$
鸡蛋花	Plumeria rubra L. ev. acuti folia	697	13. 54	51.5
白兰花	Michelia alba.	577.9	3. 89	148.5
鸡蛋果	Passi flora edulis Sims	516	7. 46	69.2
紫荆羊蹄甲	Bauhinia variegata L.	430.3	14. 8	29. 1
象 草	Pennisetum purpureum schumach	41 1. 1	10. 1	40.7
下田菊	Adenostemma Levenia (L.) O. ktze	344	15. 68	21.9
卤地菊	Wedelia prostrata L.	308.2	9. 61	32.1
豇 豆	Vigna sinensis (L.) Savi	295.8	22. 21	13.32
木 薯	Manihot exulenta Crantz	295.9	26. 6	11.1
牵 牛	Pharbitis nil(L.) Choisy	208. 1	4. 86	42.9
车 前	Plantago asiatica L.	194. 1	3. 40	57.1
花生	Arachis hypogaea L.	194	5. 65	34.3
豆 薯	Pachyrhiz us erosus Urb.	171.4	17. 9	9.6
马樱丹	Lantana camara L.	168.3	3. 79	44.4
狭叶龙舌兰	Agave angusti folia Haw.	144.8	1. 44	100.8
剑 麻	Agave sisalana Perrine	126. 3	2. 39	52.8
香 蕉	Musa paradisiaca Linn.	105.4	3. 17	33.3
蕹菜	<i>Ipomoca aquatica</i> Forsk	61.5	6. 37	9.7

表1 植物叶片 SOD 活性

从表 1 结果看出, 鸡蛋花、白兰花、鸡蛋果、羊蹄甲和象草等植物叶片 SOD 活性较高, 以 g 鲜重材料计, 都超过 400~U,尤其是白兰花叶片, 比活性也高, 达 $148.5\times10^3~U/g$ 。 **2.2** 象草 SOD 的部分提纯及性质

2.2.1 象草 SOD 部分 提纯 将象草 SOD 粗酶液于 55 °C水浴中加热至 50 °C,恒温 5 min,迅速冷却至 4 °C,15 000 r/min 离心 10 min,弃沉淀。向上清液加入固体硫酸铵至 40 %饱和度,同前离心,弃沉淀。上清液继续加入硫酸铵至 90 %饱和度,置冰箱 4 °C过夜。同前离心,弃上清液。沉淀溶于少量 10 mmol/L 磷酸缓冲液(pH7. 8),同前离心,弃沉淀。上清液对 10 mmol/L 磷酸缓冲液透析 24 h 后上 DEAE — 纤维素层析柱(3.0 cm \times 10 cm),以含 $0 \sim 0.5$ mol/L NaCl 的上述缓冲液进行线性梯度洗脱(流速 45 mL/h),出现 3 个蛋白吸收峰,酶活性出现在第 3 个峰,收集酶活性高的部分,共 55 mL。将此酶液用于下列酶学性质研究。酶被纯化了 7.29 倍(表 2)。

纯化步骤	总活性 /× 10 ³ U	总蛋白 / mg	比活性 /×10³ U°g ⁻¹	纯化度	产率 /(%)
粗酶液	177 325	1 194	148.6	1	100
热处理	157 767	840	290	1.95	89. 0
硫酸铵沉淀	86 419	109.2	791	5.32	48. 7
DEAE-纤维素层析	8 789	8.11	1 084	7.29	5.0

表 2 象草叶片 SOD 的纯化

2.3.2 部分性质 热稳定性: 将部分提纯的酶液在不同温度下保温 10 min 后迅速冷却至 4° 、于 30 [°]测定活性, 结果如图 1。象草 SOD 在 50 [°]以下较稳定, 60 [°]时活性急剧降低, 仅保持最大活性的 28 [%](图 1)。

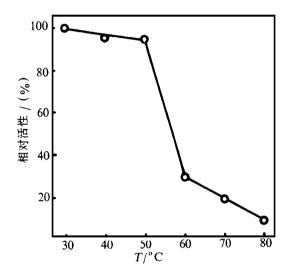


图 1 温度对象草 SOD 活性的影响

最适 pH: 取等量的部分提纯的酶液于不同 pH 的磷酸缓冲液中测定活性。结果表明, 象草 SOD 最适 pH 为 7.5 (图 2)。

pH 稳定性: 取等量部分提纯的酶液加入到 0.1 mol/L 的不同 pH 的缓冲液中 $(pH3 \sim 6$: 柠檬酸, $pH6 \sim 8$: 磷酸缓冲液, $pH9 \sim 11$: 甘氨酸缓冲液),于冰箱放置 $24 \text{ h后测定活性。结果表明, 象草 SOD 在 } pH5 \sim 11 范围内较稳定(图 3)。$

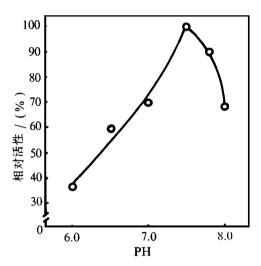


图 2 象草 SOD 的作用 pH 曲线

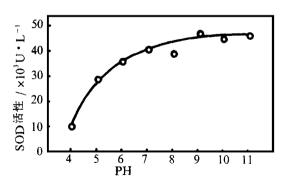


图 3 pH 对象草 SOD 稳定性影响

3 讨论

南京师范大学测定了 17 种蔬菜食用部分(陆玲等, 1991)、22 种水果(吴国荣等, 1994)SOD 活性,并分析了 22 种水果的 SOD 同工酶类型。华南植物研究所罗广华等(1994)则检测了100 多种华南食用植物(食用部分)的 SOD 活性,发现食用植物 Cu, Zn-

SOD 资源丰富,木瓜叶片含有很高 SOD 活性,超过 1000~U/g,而且木瓜叶片 SOD 活性有季节性变化。上述两单位的研究结果表明,不同地区或生长环境下生长的同种植物,其 SOD 活性大小不同。例如,吴国荣等(1994)测定桑椹的活性和比活性分别为 224.0~和 34.9,而罗广华等测出为 150~和 68.2。本研究测出蕹菜叶片 SOD 活性和比活性分别为 61.5~和 9.4(表 1),而罗广华等(1994)测定为 20~n 1.8,这可能与栽培条件有关。

通过对校园内 18 种植物叶片的调查,发现鸡蛋花、白兰花、鸡蛋果、羊蹄甲和象草含有较高 SOD 活性,以 g 鲜重计都超过 400~U(表 1)。 值得注意的是象草叶片含较高 SOD 活性。象草为禾本科牧草,多年生草本,再生能力强,一年可刈割 46~次,产量可达 150~225 t/hm^2 ,在广东省大面积种植,已成为养牛业最重要的青饲料资源(肖文一等,1991)。象草叶片富含 SOD,一方面说明它是优质的青饲料,有利于牛的健康。另一方面,从象草中提取 SOD,在原料上是可行的。

本文还对制备象草 SOD 作了初步探索。表 2 显示,纯化的酶比活性可达 1000×10^3 U/g, 但酶的回收率不高,仅 5%,主要原因是硫酸铵沉淀和 DEAE—纤维素柱层析步骤的回收率低。图 1 结果表明,象草 SOD 对热不稳定,仅在 50 [©]以下较稳定,60 [©]时失去大部分活性。而菠萝 SOD 对热较稳定,75 [©]仍能保持 1/2 以上活性(吴国荣等,1994)。象草 SOD 最适 pH7.5 (图 2),对 pH 的稳定范围为 pH5~11(图 3),这与吴国荣等(1994)对菠萝 SOD的研究结果一致。

参 考 文 献

肖文一,陈德新,吴渠来编著. 1991. 饲用植物栽培与利用. 北京. 农业出版社, 158~161

吴国荣, 魏锦城, 程光宇等. 1991. 植物药超氧物歧化酶活性与某些性质的研究. 南京师大学报(自然科学版), 14(2); 93~101

吴国荣, 魏锦城, 程光宇等. 1994. 水果超氧物歧化酶活性及性质. 南京师大学报(自然科学版), 17 (2): 113~120

陆玲,周迎会,邹玉珍等. 1991. 蔬菜超氧物歧化酶活性比较与某些性质研究. 南京师大学报(自然科学版),14(2):110~116

罗广华, 王爱国, 吴航等. 1994. 华南食用植物的 SOD 资源. 中国科学院华南植物研究所集刊, 第7集. 北京: 科学出版社, 69~80

袁勤生. 1994. SOD 在医药、食品和日化工业上的应用. 中国生化药物杂志, 15(4): 289~293

Bradford M M. 1976. A rapid and sensitive method for the quantitation of micro gram quantites of protein utilizing the principle of protein—dye binding. Anal Biochem, 72: 248~254

Giannopolitis C N, Ries S K. 1977. Superoxide dismutaae. I. Occurrence in higher plants. Plant Physiol. 59; 309 ~ 314

SUPEROXIDE DISMUTASE ACTIVITIY IN PLANT LEAVES AND ITS ISOLATION FROM *Pennisetum purpureum* SCHUMACH

Lu Shaoyun Guo Zhenfei Li Mingqi (College of Biotechnology, South China Agr. Univ., Guangzhou, 510642)

Abstract

Superoxide dismutase (SOD) activity of leaves of 18 plants growing in South China Agricultural University were determined and reported in this paper. The leaves of 5 plants, *Plumeria rubra* cv. acutifolia, Magnolia denudata, Passiflora edulis, Bauhinia variegata and Pennisetum purpureum, had higher activity, above 400 units/g fresh weight. SOD was partially purified from Pennisetum purpureum leaves by heat treatment, (NH₄)₂SO₄ precipitation, and DEAE— cellulose chromatography, and its properties studied.

Key words plant leaves; superoxide dismutase; Pennisetum purpureum

欢迎订阅一九九七年《华南农业大学学报》

《华南农业大学学报》是华南农业大学主办的综合性农业科学学术刊物。本刊主要报道我校各学科的科研学术论文、研究简报、文献综述等。本刊附英文目录和英文摘要。读者对象是农业院校师生、农业科研人员和有关部门的专业干部。

国内外公开发行, 季刊。 每期定价 2. 50 元, 全年 10. 00 元。 自办发行, 参加高等学校学报联合征订发行。

订阅办法: 1. 将订阅款邮汇至: 邮政编码 100054, 北京右安门外首都医科大学期刊社, 2. 银行汇款至: 户名: 首都医科大学期刊社, 开户银行: 工商行北京宣武支行樱桃园分理处, 帐号: 144659—71。

《华南农业大学学报》编委会