桑树硬枝扦插水培发根试验

谢特新 谭炳安 (华南农业大学蚕桑系,广州 510642)

摘要 桑树硬枝插穗基部经吲哚丁酸(IBA)处理后在自然平均水温 24.5 \mathbb{C} 、气温 28.8 \mathbb{C} 条件下进行水培扦插,第 25 d 后抗青 10 号、剑持、黑油桑、桐乡青的发根率分别为 100%、70%、70% 和 23.3%。插穗不定根形成的部位除常见的根原体、愈伤组织发根外,还发现了较为罕见的皮孔出根。对皮孔出根作了扫描电子显微镜观察。

关键词 桑树; 硬枝扦插; 水培中图分类号 S 888 32

目前,不少作物特别是蔬菜类可以利用水培方法进行大规模生产,而桑树的水培法只用于桑树生理病理方面的研究。在生产上,桑树硬枝扦插一般先经沙床预措,再移入苗圃培育成苗。日本三重县农业技术中心蚕业部把经过吲哚丁酸(IBA)处理的桑树硬枝插穗基部浸于 30 ° 的恒温水中 $10 \sim 12$ d,然后移至温床中培育,结果对插穗发根有促进作用(中村清,1987)。本试验利用秋天的自然水温及气温条件,让插穗在水中直接发根,旨在探讨桑树硬枝水培扦插的可行性。

1 材料与方法

1.1 水培槽的制作及水质

水培槽的制作参照谭炳安(1991)所述方法但体积减半制成。而水质分两种,一是自来水,二是营养液。营养液按Hoagland & Arnon 的配方配制(连兆煌, 1994)。

1.2 供试桑品种

桑品种有广东桑 Morus atropurpurea Roxb. 的抗青 10号、山桑 Morus bombycis Koidz. 的剑持、白桑 Morus alba Linn. 的黑油桑、鲁桑 Morus multicaulis Perr. 的桐乡青共 4个。

1.3 剪取插穗

各品种均采用当年生枝条,早上从桑园剪取枝条,当天下午剪取插穗。

剪法一: 插穗长 13~15 cm(3~4 芽), 基部在近叶痕处平剪, 使插穗基部近切口处带有 芽及根原体, 插穗顶部齐芽尖处平剪, 即常规的两剪一根插穗。 每条枝条除梢端绿枝外全部 利用。另外, 抗青 10 号品种部分枝条每条剪成 6 根插穗, 按插穗在枝条上的位置分下部插穗、中部插穗、上部插穗分别处理调查。

剪法二: 插穗长度同剪法一, 每根插穗齐芽尖平剪, 一剪一根插穗。与剪法一相比, 插穗基部近切口处没有芽及根原体(见图 1)。

1996-09-04 收稿 谢特新, 男, 46 岁, 副教授

1.4 吲哚丁酸处理

用 50 mg/L 吲哚丁酸 (IBA)处理插穗基部。剪法一的插穗分别浸入基部1 cm 和 10 cm 两种不同深度;剪法二的插穗只浸入基部1 cm 一种处理。浸渍时间为 6 h,然后用清水冲洗掉浸口上的药液。

1.5 插穗水培处理

插穗放置 1 夜后,于次日早上进行水培处理。插穗浸水深度有 1 cm 和 10 cm 两种处理,即与插穗浸吲哚丁酸的深度一致。每 10 根插穗放一个插孔。插穗入水后,开动水族箱用增氧泵,使水培槽内的水循环流动,以后注意补充水分,使其保持水槽原定水位。

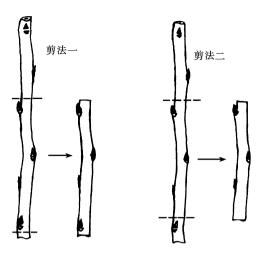


图 1 插穗剪法示意图

水培时间从 1995 年 9 月 21 日至 1995 年 10 月 15 日。

1.6 利用扫描电子显微镜观察插穗发根的部位

2 试验结果

2.1 不同水质及浸水深度与插穗发根的关系

水培扦插后 13 d,浸水深度为 1 cm 处理的部分插穗可见发根现象,第 25 d 的调查结果 如表 1。结果表明,在水质为自来水的扦插中,多数品种的发根率及平均每根插穗发根条数 均比营养液好,而根粗稍差。但不管那种水质,品种间的发根率差异较大,在自来水培养中, 抗青 10 号的发根率达 100%,而桐乡青仅为 23. 3%,这可能与品种所属的桑种系统有关。

插穗基部浸水深度为 10 cm 的扦插,不管那种水质,始终未见发根,并出现皮部腐烂现象。因此,插穗浸水不宜过深。

水质	品 种	扦插 插穗	发根 插穗	发根率	每根插 穗发根	最长根	根直径
		/ 根	/ 根	/(%)	/ 条	/ cm	/ m m
	抗青 10 号	30	30	100. 0	21. 4	17	1. 0
中サル	剑 持	30	21	70.0	12. 7	14	0.7
自来水	黑油桑	30	21	70.0	4. 9	8	0.7
	桐乡青	30	7	23. 3	2. 3	3	0. 5
营养液	抗青 10 号	30	23	76.7	13. 7	24. 3	>1
	剑 持	30	26	86.7	11. 1	9. 7	1
	黑油桑	30	12	40.0	5. 7	19. 0	>1
	桐乡青	30	2	6.7	2. 5	3. 8	1

表 1 不同水质与插穗发根的关系1)

¹⁾ 剪法 一的插穗, 基部入水 1 cm。 平均水温 24.5°C, 平均气温 28.8°C

2.2 插穗不同部位、剪法与发根的关系

表 2 的结果表明, 剪法二的抗青 10 号插穗虽然基部没有根原体, 但其发根率同样可达 100%。每根插穗发根条数与剪法一基部有根原体的插穗基本一致, 而采用剪法二剪插穗更省工, 值得采用。不同枝条部位的插穗, 其发根率没有差异。但有下部插穗发根多、上部插穗根生长较长的倾向。

插穗 剪法	插穗 部位	扦插 插穗	发根 插穗	发根率 /(%)	每根插 穗发根 / 条	最长根 / cm
另石		/ 根	/ 根			
	上部	30	30	100	16 0	21. 0
剪法一	中部	30	30	100	14. 7	18. 0
另冮一	下部	30	30	100	18.3	16. 0
	混合	30	30	100	21. 4	17. 0
剪法二	混合	30	30	100	19. 5	17. 0

表 2 插穗不同部位、剪法与发根的关系1)

2.3 水培插穗的发根位置

观察水培插穗发根的位置,除了由根原体发根外,也有非根原体发根。但与沙培不同,非根原体发根有两种情况。一是在基部切口 1 cm 内的位置(即浸水部分)皮部出现不规则的隆起,在隆起处长出根来,即常称的愈伤组织发根(图版中的 $1 \cdot 2 \cdot 3$)。但在剪口处看不到象沙培那样的愈伤组织(图版中 7)。二是在浸水处以上的湿润位置,根从皮孔中长出来(图版中 8),这是沙培罕见的。据观察,插穗潮湿处的褐色皮孔首先变白、隆起变大,然后新根从皮孔中长出,一个皮孔只长一条根(图版中 $4 \cdot 5 \cdot 6$)。剪法二的插穗除没有根原体根外,非根原体发根与剪法一相同。

3 结论与讨论

初步试验结果表明, 桑树虽然是木本植物, 但是硬枝扦插水培同样可以发根, 易发根品种的发根率高达 100%。在水质方面, 自来水即可使插穗发根而无需添加营养液。而插穗浸水深度宜浅不宜深, 当浸水深度达 10 cm 时, 也许由于缺氧的原因, 插穗皮层腐烂, 不会发根, 但最适的浸水深度还要进一步摸索。至于绿枝是否也可发根还有待试验。

关于水培扦插的发根部位,除了早已清楚的根原体发根及愈伤组织发根外,还有沙培较为罕见的皮孔出根。沈增学(1992)对皮孔出根作了首例报道,是插穗在高温条件受一定浓度生长素处理,在枝条皮孔处生长皮孔根。而在常温水培就可获得皮孔出根则未见报道。本试验对皮孔出根作了扫描电子显微镜观察也属首例,但皮孔出根的内部发生过程及其发生条件有待进一步研究。

在生产上,一般桑树常规扦插繁殖容易受桑白绢病的为害,即使是易发根品种,一经病菌侵染,就难发根成活(广东农林学院植物病理学教研组,1977)。也许白绢病菌不适于水中生长,所以,水培扦插未见插穗受该病为害。同时,土壤温度对插穗发根有很大的影响(苏州蚕桑专科学校,1991),但土温难以调节控制。而水温则容易控制,在水中放入电热毯用的发热丝,再连接温控装置,通电后就可以自动保持目的温度,有利于插穗发根。因此,对一些温

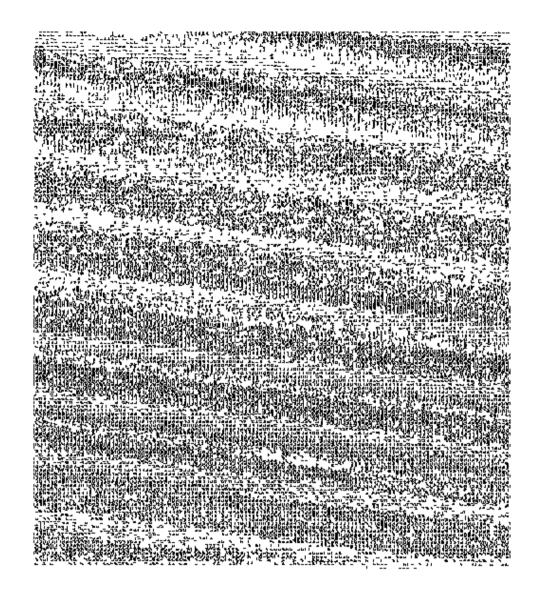
¹⁾ 水质为自来水, 品种为抗青10 号。平均水温24.5℃、平均气温28.8℃

度要求严格或易感染桑白绢病的难发根品种,水培扦插育苗有一定的实用意义。若人工控制水温,给插穗最合适的发根温度,待插穗发根发芽后,在水中再添加营养液,加快新梢生长,长到一定程度便可移栽大田。免去苗圃培育阶段,工厂化生产插条苗将成为可能。这些工作有待以后进一步探讨。

致谢 承蒙本校生物系丘醒球副教授指导电镜观察,蚕桑系黄志君、黄宾、陈辉同志参加部分调查工作,谨此一并致谢。

参考文献

广东农林学院植物病理学教研组.1977.经济作物病害防治.广州:广东人民出版社,183~187连兆煌.1994.无土栽培原理与技术.北京:中国农业出版社,57沈增学.1992.湖桑扦插生根部位新发现.苏州蚕桑专科学校学报,5(1):49苏州蚕桑专科学校.1991.桑树栽培及育种学.第2版.北京:农业出版社,71~74谭炳安.1991.桑树品种抗青枯病性能测定方法研究.广东蚕丝通讯。(4):35~40中村 清.1987.温水炒合促进古条插木法.蚕糸科学と技术,26(2):48~51


STUDY ON ROOTING OF MULBERRY STEM CUTTINGS BY WATER CULTURE

Xie Texin Tan Bing 'an (Dept. of Sericulture South China Agr. Univ., Guangzhou, 510642)

Abstract

Cuttings of mulberry stems were treated with indolebuty ric acid and then cultured under the condition of average water temperature 24.5 °C and average air temperature 28.8 °C. On the 25th day after the cuttings were treated, the rooting rates of the cultivars Kangqing No. 10, Jianchi, Heiyou, and Tongxiangqing were 100%, 70%, 70%, and 23.3%, respectively. Besides root primordium rooting and callus rooting, the rare lenticel rooting was also encountered. The lenticel rooting was studied with scanning electron microscopy in this study.

Key words mulberry; rooting of cuttings; water culture

图版 桑树水培扦插愈伤组织及气孔发根

1~3 愈伤组织发根: 1. 插穗表面, 根从裂缝中长出; 2. 插穗横切, 新根穿出皮部; 3. 插穗纵切, 示长根位置。4~6 皮孔出根: 4. 插穗表面, 皮孔变白, 隆起变大; 5. 插穗横切, 根从皮孔中长出; 6. 插穗纵切, 根从皮孔中长出。7. 插穗基部切口, 皮部与木质部界线明显, 看不到愈伤组织。8. 发根插穗,箭头处为皮孔出根。

1~6为电镜照片,7~8为普通照片。