华南赤红壤物理性状的研究

李映强

(华南农业大学资源环境学院,广州,510642)

摘要 对华南赤红壤的主要物理性状进行了研究, 结果表明, 土壤水稳性结构体的含量为 42% ~48%, 并与< 0.005 mm 颗粒含量具显著的正相关; $0 \sim 10$ cm 土层具有较高团聚体孔隙度和导水率. 日在高基质势范围内具有较好的通透性和供水性能。

关键词 赤红壤; 结构性; 饱和导水率; 基质势中图分类号 S 152

我国华南地区广泛分布着具有鲜明南亚热带地带性特征的赤红壤,是华南地区粮食作物和经济作物生产的重要基地。但由于赤红壤风化度深,酸度大,胶体品质差,物理性状不良,很不利于作物的正常生长。本文就赤红壤的主要物理性状作初步研究,拟为赤红壤的改良培肥提供科学依据。

1 材料与方法

供试赤红壤采于华南农业大学实验农场,成土母质为花岗岩。分 $0 \sim 10 \text{ cm} \cdot 10 \sim 20 \text{ cm} \cdot 20 \sim 30 \text{ cm} 三层采集样本。 土壤有机质含量和质地分别为: <math>0 \sim 10 \text{ cm} \pm 14.8 \text{ g/kg}$,轻壤土; $10 \sim 20 \text{ cm} \pm 10.8 \text{ g/kg}$,中壤土; $20 \sim 30 \text{ cm} \pm 10.8 \text{ g/kg}$,轻壤土。 土壤颗粒的分级采用卡庆斯基制; 土壤结构分析采用沙维诺夫法,并按 $D_{\text{MW}} = \sum\limits_{i=1}^{n} X_i W_i$ 计算团聚体平均重量直径(姚贤良,1985),式中 X_i 为各粒径水稳性团聚体的平均重量直径(mm), W_i 为各粒径水稳性团聚体的重量直径(mm), W_i 为各粒径水稳性团聚体的重量百分数。 团聚体稳定性采用浸水崩解法(姚贤良等,1986); 团聚体孔隙度采用石蜡法(刘孝义,1982); 土壤 $0 \sim -80 \text{ kPa}$ 基质势的持水曲线采用张力计法(中国科学院南京土壤所土壤物理室,1978);土壤饱和导水率采用变水头法(希勒尔,1988)。

2 结果与讨论

2.1 土壤结构及其稳定性

分析结果(表 1)表明, 赤红壤>0. 25 mm 水稳性团聚体的含量为 $42\% \sim 48\%$ (已扣除各级砂粒含量), 团聚体平均重量直径($D_{\rm MW}$)为 $1.2 \sim 1.3$ mm, 团聚体水稳性指数为 $38\% \sim 54\%$ 。

表 1 赤红壤不同层次的结构状况

	20. 1	23.5T.16	113/2/(43-413///00		/ 0
土层	> 0. 25 mm 水稳性	$D_{ m MW}$	 水稳性指数	0. 005~0. 001 mm	< 0.001 mm 粘粒
/ cm	团聚体含量	/ mm	小心心工工日女	细粉粒含量	含量
0~10	42.3	1.18	38.4	6.40	15.10
10~20	47.7	1.33	54. 5	8.81	19.81
20~30	46.8	1.30	49. 5	7.89	18.68

从表 1 可以看出,各层次土壤的水稳性团聚体含量、 D_{MW} 和水稳性指数都不尽相同,但这 3 个指数的变化趋势是完全一致的,并均与细粉粒 $(0.005\sim0.001~\text{mm})$ 含量具较好的正相关关系(相关系数 r 分别为 0.973~3、0.980~5、0.970~3),与粘粒(<0.001~mm)含量具显著的正相关关系(r 分别为 $0.997~^*$ 、 $0.999~1~^*$ 、 $0.997~1~^*$)。 这说明赤红壤水稳性团聚体的数量和稳定性与其粘粒含量密切相关,细粉粒的含量也在一定程度上影响到赤红壤的结构状况。同时表明,在该气候条件下,粘粒和细粉粒均有向下层淋洗和淀积的现象。

2.2 团聚体孔隙度与饱和导水率

土壤团聚体的绝对数量和稳定性并不能完全说明结构性的优劣,而团聚体的孔隙度则是评价结构性好坏的重要指标之一(姚贤良,1985;方兆登,1987)。

	团聚体孔	饱和导水率	
土层/cm	> 3 mm 团聚体	3~1 mm 团聚体	$K_{s}/ \text{ cm } \circ \text{min}^{-1}$
0 ~ 10	45.2	39.8	5. 33× 10 ⁻²
10 ~ 20	35.9	32.5	1. 70×10^{-2}
20 ~ 30	39.8	36.1	3.05×10^{-2}

表 2 团聚体孔隙度及渗透性变化

实验数据(表 2)表明,各级团聚体的孔隙度与水稳性团聚体的数量和稳定性变化(表 1)恰恰相反。即水稳性团聚体数量较少、稳定性较低的耕作表层(0~10 cm)土壤,其大小团聚体的孔隙度都最高。而水稳性团聚体数量较多、稳定性较高的下层(10~30 cm)土壤,其大小团聚体的孔隙度反而最低,这与土壤有机质含量和粘粒排列具有明显的关系。耕作表层土壤有机质含量(14.8 g/kg)相对较高,有利于形成疏松多孔的团聚体(李映强等,1991),因而各级团聚体的孔隙度均相对较高。10~30~cm 土样因粘粒淀积较多(表 1),排列紧密,团聚体孔隙度较低。但团聚体的孔隙度只能表示总的孔隙容积,却不能反映孔隙的大小和通透性,而饱和导水率则在一定程度上反映了孔隙的大小和数量(姚贤良等,1986)。从表 2 可见,耕作表层的饱和导水率远远高于下层土壤,且与>3~mm 团聚体的孔隙度具显著的相关性($r=0.998~5^*$)。表明耕作表层土壤团聚体不但孔隙度高,而且大孔隙也多,并主要存在于>3~mm 的团聚体之中。土壤结构性的好坏不能单从水稳性高低去评价,水稳性高的结构未必就是好的结构,这关键取决于胶结物质。以有机胶体为主要胶结物形成的结构,即使水稳性低于铁、铝胶体胶结形成的结构,但由于疏松多孔而适于作物的生长。因此,增施有机肥、培育良好的土壤结构,特别是>3~mm的结构,能有效改善旱地土壤的通透性。

2.3 赤红壤在高基质势下的持水性能

土壤水基质势由毛管势和吸附势决定,且在一定条件下毛管势占主导地位。而土壤不同结构状况下的孔隙性影响毛管势的大小,特别是在高基质势(> -100 kPa)时尤为突出(希勒尔,1981)。

一般认为, $0\sim -6$ kPa 时排除的水分为多余水, $-6\sim -100$ kPa 时排除的水分为作物正常生育有效水(杨金楼、1982)。 从表 3 可以看出,在 $0\sim -6$ kPa 时,土壤水容量是 $0\sim 10$ cm 土壤 $>20\sim 30$ cm 土壤 $>10\sim 20$ cm 土壤,这反映了土壤排除多余水分的能力,也即排水通气的能力,表明耕作表层 $(0\sim 10$ cm)土壤具有较好的通透性,这与该层土壤有机质含量较多,因聚体孔隙度较高,饱和导水率较大是完全一致的。 这从土壤持水曲线 (图 1) 也可明显

看出,耕作表层 $(0\sim10~{
m cm})$ 土壤在 $0\sim-6~{
m kPa}$ 的高基质势范围内,持水曲线的斜率最大、坡度最陡。

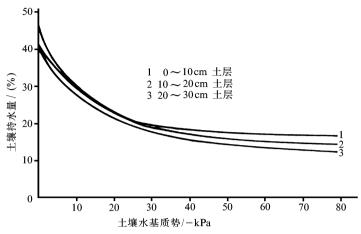


图 1 不同层次土壤的持水曲线

从表 3 还可以看出, 在一6~一80 kPa 的基质势范围内,单位基质势下释放的水分(水容量)仍以耕作层土壤为最多,而该基质势范围内释放的水分是植物正常生育所需的有效水分。这说明疏松多孔的团聚体无论在排水通气,还是在保存和释放有效水方面均是对作物生长有利的。

表 3 不同层次土壤的水容量

mL/MPa°g

		水容量	
李灰另/ KI a	0 ~ 10 cm	10~20 cm	20~30 cm
0~-6	18.3	13.3	15.8
−6~−80	2.7	2.5	2.5

2.4 赤红壤的可塑特性

了解土壤的可塑特性,对于土壤培肥和合理耕作均有重要意义。测定结果 (表 4)表明,赤红壤剖面各层次的可塑特性都不一样,并与粘粒的含量表现出极显著的相关 ($r=1.000^{**}$)。耕作表层 $(0\sim10~{\rm cm})$ 土壤的塑限远高于下层土壤的塑限,这意味着该土壤在含水量低于 28.5%时,表层土壤易于耕作,但下层土壤则易于压实和变形,因而使得 $10\sim20~{\rm cm}$ 土层的结构致密、孔隙度低和通透性差。而结构性良好的耕作表层,其塑性范围很窄,塑性指数仅 4.4%。因此,该赤红壤的改良必须是在投入有机肥料的前题下,深耕至 $20~{\rm cm}$ 土层以下,以达到改良结构性、缩小塑性范围、降低塑性指数和提高耕作质量的目的。

表 4 不同层次土壤的可塑性

%

土层/cm	塑限	流限	塑性指数
0 ~ 10	28.5	32.9	4. 4
10 ~ 20	21.0	28.0	7. 0
20 ~ 30	23.3	28.9	5. 6

3 小结

华南赤红壤耕作层浅薄, 土壤结构致密, 孔隙性差, 排水通气性不良, 塑性范围较宽, 仅 10 cm 土层内的有关物理性状相对较好, 这远满足不了作物正常生长所需要的土壤物理条件, 会在一定程度上限制农业生产的进一步发展。因此, 必须进一步强调有机肥料的施用, 并结合深耕改土, 以促进土壤物理性状的改善。

参考文献

中国科学院南京土壤研究所土壤物理室编. 1978. 土壤物理性质测定方法. 北京: 科学出版社, 123~130

方兆登.1978. 杭嘉湖平原水稻土物理性状的探讨. 土壤, 19(5): 253~258

刘孝义编著。1982 土壤物理及土壤改良研究法。上海: 上海科学技术出版社, 4~5

李映强,曾觉廷. 1991. 不同耕作制下土壤有机物质变化及其团聚作用. 土壤学报, 28(4): 404~409

希勒尔 D. 1981. 土壤和水—物理原理和过程. 华孟等译. 北京:农业出版社,51~108

希勒尔 D. 1988 土壤物理学概论、尉庆风等译、西安、陕西人民出版社、68~69

杨金楼. 1982 上海地区土壤持水特性研究. 土壤学报, 11(4): 331~342

姚贤良. 1985. 关于集约农作制下的土壤结构问题. 土壤学报, 22(3): 241~249

姚贤良,程云生。1986. 土壤物理学。北京,农业出版社,75~86

STUDY ON THE PHYSICAL PROPERTIES OF LATERITIC RED EARTH IN SOUTH CHINA

Li Yingqiang

(College of Natural Resources & Environment South China Agr. Univ., Guangzhou, 510642)

Abstract

The main physical properties of lateritic red earth in south China were studied. The results showed that the content of the waterstable aggregate was $42\% \sim 48\%$ and showed a significantly positive correlation with the content of soil grains for < 0.005 mm. The porosity of aggregate and sadurated conductivity were higher in $0 \sim 10$ cm soil layer, and permeabilities of air and water supply were better.

Key words lateritic red earth; aggregate state; saturated coductivity; matric potential