鸡传染性喉气管炎病毒 gB 基因 核酸探针的研究

郭霄峰

(华南农业大学动物医学系,广州,510642)

摘要 将插有传染性喉气管炎病毒(ILTV)糖蛋白 B(gB)基因的重组质粒 pILgB 克隆,然后用碱法抽提,乙醇沉淀。质粒 pILgB 经 $E\infty$ RI 酶切后,用地高辛标记,获得 $ILTV_gB$ 基因的核酸探针。该探针分别与传染性喉气管炎病毒,传染性支气管炎病毒,传染性法氏囊病毒,禽流感病毒,马立克氏病病毒,新城疫病毒核酸斑点杂交,发现只有传染性喉气管炎病毒的核酸有阳性反应,说明该探针对 ILTV 有高度的特异性。gB 基因核酸探针与不同浓度的核酸杂交,能检出 $0.01\mu_g$ 的核酸。表明该探针高度敏感。实验结果还显示,探针能重复多次使用,检测效果不变。

关键词 传染性喉气管炎病毒;糖蛋白 B 基因;地高辛;核酸探针中图分类号 S 852.65

鸡传染性喉气管炎(ILT)是传染性喉气管炎病毒(ILTV)引起的鸡的一种急性致死性上呼吸道传染病。该病早在 1925 年已发现,历时半个多世纪仍未能控制。目前,世界上许多国家均有该病发生的报道。在中国,ILT 是鸡的主要传染病之一。在感染鸡群,鸡只死亡率平均在 $10\%\sim20\%$,产蛋量严重下降,大大妨碍了养鸡业的发展。

在 ILT 感染的康复鸡群中,大约 2%的鸡只发展为隐性带毒者(蔡宝祥等,1980),它们是病毒长期存在于鸡群的根源。当前控制 ILT 的主要措施是接种弱毒疫苗,但接种弱毒疫苗后部分鸡只呈潜伏性感染(Hughes et al, 1991)。据报道,潜伏性感染能导致病毒的扩散,病毒毒力返强和引起易感鸡发病(Guy et al, 1991)。同时,ILT 的呼吸道症状还与鸡新城疫(ND),禽流感(AI),鸡传染性支气管炎(IB)极相似。因此,临床上需要一种特异、敏感和快速的诊断方法。病毒的分离(Hughes et al, 1988),电镜观察(Guo et al, 1993),病毒血球凝集试验(Nodaet al, 1990),病毒中和试验(Hitchner et al, 1958),酶联免疫吸附试验(ELISA)(York et al, 1983)等均可用于 ILT 的诊断。遗憾的是,这些方法费时,并且有的特异性和敏感性较差。

为了获得一种对ILTV 特异、敏感的方法用于临床和实验室研究,本文报道 了 ILTV gB 基因核酸探针的制备,并对该探针的特异性和敏感性进行了探讨。

1 材料与方法

1.1 材料

1.1.1 质 lpha、酶 及试 剂 pIL_gB 质粒由美国普渡大学郭培宣教授惠赠(在 pUC18 中插有含

ILTVgB 基因的 ILTVDNA EcoRI3.0 kb 片段); 工程菌 NM522, pUC18 华南农业大学动物 医学系微生物教研室保存; EcoRI 内切酶, 地高辛标记检测试剂盒, 硝酸纤维素膜, X—gal, IPTG 购自 Boehringer 公司; DNA Marker DNA/Hind III购自华美公司。

1.1.2 病毒 ILTV DN A7 [‡]由郭培宣教授惠赠; ILT V 花县株 (ILT VH) 由广东省农业科学院黄承锋研究员惠赠; 禽流感病毒 (AIV) 由华南农业大学动物医学系禽病教研室惠赠; 马立克氏病毒 (MDV) 弱毒疫苗购自南京药械厂; 传染性支气管炎病毒 (IBV) P14E4930406购自北京中国兽药监察所; 鸡新城疫病毒 (NDV) 弱毒疫苗、鸡传染性法氏囊病毒 (IBDV) 弱毒疫苗由华南农业大学动物医学系微生物教研室保存。

1.2 方法

- 1.2.1 pILgB 质粒的克隆 大肠杆菌 NM522 感受态细胞的制备参照萨姆布鲁克等 (1992)的方法。于冰浴中浮育了 18 h 的 200 μ L 感受态细胞中加入 12 ng pILgB 质粒,冰浴 30 min,42 [©]热冲击 90 s,冰浴 2 min,再加 800 μ L LB 肉汤,于 37 [©]200 r min ⁻¹ 振荡 30 min。之后,将转化子涂布于含 50 μ g/mL 氨苄青霉素,40 μ LX gal,4 μ L IPTG 的 LB 平 板中,37 [©]培养 16 h。
- 1.2.2 转化子的 电泳分析 挑出 LB 平皿中的白色菌落, 移植于 1.5 mL 含氨苄青霉素的 LB 肉汤中,37 $^{\circ}$ 200 r $^{\circ}$ min $^{-1}$ 振荡过夜。碱提取法抽提质粒并用 EcoRI 消化,然后于 0.7% 的琼脂糖中电泳,同时以 EcoRI 酶解后的 pUC18 和 λ DNA/Hind II作对照。
- 1.2.3 地高辛标记 pILgB 质粒 Eco RI 酶解的质粒经酚、酚: 氯仿: 异戊醇(25 · 24 · 1)和氯仿抽提后,用乙醇沉淀,然后按试剂盒方法进行标记。于一个 0.5 mL 的 eppendorf 管中加入 1.0 μ g 经 100 [©]变性的 pILgB 质粒,2.0 μ L Hexanucleotide 混合物,2.0 μ L dNTP 标记混合物,1.0 μ L Klenow,加双蒸水至总体积 10.0 μ L。混匀后,37 [©]水浴过夜。加 2.5 μ L LiCL,75 μ L 乙醇沉淀标记的 DNA,DNA 溶解于 50 μ L TE 中,一 20 [©]保存备用。
- 1.2.4 核酸杂交 病毒的处理: 传染性喉气管炎病毒 (鸡胚绒毛尿膜的匀浆液,与生理盐水的比例是 1.10),鸡传染性支气管炎病毒,鸡传染性法氏囊病毒,鸡新城疫病毒,禽流感病毒,马立克氏病病毒各 $500~\mu$ L,冻融两次,加入 SDS 和蛋白酶 K 分别达 1%和 $150~\mu$ g/mL, $37~^{\circ}$ C 2~h, $10~000~r~min^{-1}$ 离心 10~min,弃沉淀。上清液用酚,氯仿抽提,再用乙醇沉淀核酸。核酸溶解于 $20~\mu$ L TE 中。

硝酸纤维素膜的处理: 首先将硝酸纤维素膜于双蒸水中浸泡 2 h,然后在 20 倍的 SSC 中浸泡过夜,再 80 $^{\circ}$ 烘干。

点样:核酸样品于 100 ℃水浴中变性 10 min 后,点于硝酸纤维素膜上。其中 1 [‡]膜点有 pILgB, ILTV DN A 7 [‡], ILTV HDN A 每孔 1.0 ^µL, IBDV RN A, IBV RN A, NDRNA, AIV R-NA, M DV DN A 每孔 2.0 ^µL。 2 [‡]膜点上 pILgB 的连续稀释液 (1.0、0.1、0.001、0.0001 ^µg),每孔 1.0 ^µL。然后将膜于 80 ℃真空中干燥 2 h。

预杂交: 将点有样品的硝酸纤维素膜置于一杂交袋中, 注入含 200 ng/mL Herring sperm DNA 的杂交液 10 mL, 68 ℃水浴浮育 4 h。

杂交试验: 地高辛标记的 pILgB 于 $100\,^{\circ}$ C水浴中变性 $10\,$ min,再加于盛有硝酸纤维素膜的杂交袋中,标记质粒的含量为每 mL 杂交液 $26\,$ ng。 $68\,^{\circ}$ C水浴 $12\,$ h,之后 $2\,$ 倍的 SSC, $0.1\,^{\circ}$ SDS 漂洗两次,每次 $5\,$ min。 $0.1\,$ 倍的 SSC, $0.1\,^{\circ}$ SDS 液中 $68\,^{\circ}$ C漂洗两次,每次 $15\,$ min。

和 NBT 的溶液中 2 h 左右。

2 结果

2.1 pILgB的克隆及鉴定

pIIgB 质粒转化大肠杆菌后,发现 LB 平板中有大量白色菌落。挑取白色菌落于 LB 肉汤中,37 $^{\circ}$ C振荡过夜,扩增细菌,碱法抽提质粒,E $_{\circ}$ E $_{\circ}$ R 酶切,与 pUC18 质粒和 $_{\circ}$ DNA/Hind III—起电泳,溴化乙锭染色。如图 1,发现抽提的质粒有两条核酸带,位于 DNA Marker 的2.3 kb 与 4.5 kb 之间,其中一条带的位置与pUC18 质粒一致。经测算,这两条带的碱基为 3.0 kb 和 2.7 kb。表明所克隆的质粒为插有 ILTVgB 的重组质粒,即 pIIgB 质粒。

2.2 核酸探针的特异性

地高辛标记的 pILgB 质粒分别与 pILgB, ILTVDNA7 ♯, ILTVHDNA, IBDVRNA, IB-VRNA, NDVRNA, AIVRNA, MDVDNA 杂交, 结果如图 2 所示, gB 探针与 pILgB, ILTVDNA7 ♯, ILTVHDNA 杂交为阳 性, 与 IBDVRNA, IBVRNA, NDVR-NA, MDVDNA, AIVRNA 的杂交为阴性, 表明该探针对 ILTV 有高度的特异性.

2.3 核酸探针的敏感性

地高辛标记的 gB 探针分别与 $1.0 \times 0.1 \times 0.01 \times 0.001 \times 0.0001$ μ_g 的 pILgB 质粒杂交,如图 3 所示,该 探针能检出的最小量核酸为 0.01 μ_g ,表明该探针有高度的敏感性。

2.4 核酸探针的稳定性

2.5 实验的重复性

以相同的方法第二次,第三次标记 pILgB 质粒,并与 pILgB,ILTVD-NA7 ♯,ILTVHDNA,IBDVRNA,IBVRNA,NDVRNA,AIVRNA,M DVDNA杂交,均获得相同的敏感

图 1 重组质粒的酶切图谱

- 1. 标准λDNA/HindIII片段对照:
- 2. 重组质粒的 EcoRI 酶切片段;
- 3. 质粒 pUC18的 EcoRI 酶切片段

图 2 ILTVgB 探针与不同病毒核酸的杂交图谱 1.重组质粒pILgB; 2. ILTV-DNA7 #; 3. ILTVH-DNA; 4. MDV-DNA; 5. IBV-RNA; 6. NDV-RNA; 7. IBDV-RNA; 8. AIV-RNA

图 3 ILTVgB 探针与不同浓度的核酸杂交图谱 1. 1.0⁴g; 2. 0.1⁴g; 3.0.0 1⁴g;

Electronic Publishing House. Adloights reserved. http://www

性和特异性。

3 讨论

ILTV 的主要抗原基因 g B 基因位于 ILTV DNA 的 EcoRI 3.0 kb 片段中,其编码的糖蛋白对 ILTV 感染的鸡有明显的保护作用(Kong suwan et al, 1991; York et al, 1991)。本实验成功地将 ILTV g B 克隆。

用分子生物学的方法诊断 ILT 已有不少报道(Scholz et al, 1994; Keam et al 1991),其中有同位素标记的核酸探针, 地高辛标记的核酸探针(Keam et al, 1991; 张绍杰等, 1996),生物素标记的核酸探针(童光志等, 1992)。但由于同位素存在放射性危害以及半衰期短的缺点,应用和推广受到很大的限制。试验证明,生物素标记核酸探针的敏感性尤其是特异性差(王永山等, 1994)。因此,本研究用地高辛标记 ILTVDNA,制备了 ILTVgB 探针。该探针分别与不同病毒的核酸杂交,发现只有 ILTVHDNA,ILTVDNA7 \sharp , pILgB 为阳性反应,IBVRNA,IBDV RNA,AIVRNA,NDV RNA,M DVDNA 为阴性反应,表明该探针对ILTV 有高度的特异性,并且能检出来自不同毒株的 ILTVDNA。

为了测定 gB 探针的敏感性,实验中用不同浓度的核酸与探针反应,结果表明,该探针能检测的最小核酸量为 $0.01\,\mu_{\rm S}$,说明 gB 探针检测 ILTV 具有较高的敏感性。

地高辛制备 DNA 探针的另一个优点就是探针的稳定性。实验中,同一批杂交液,重复使用 3 次,均具有相同的敏感性和特异性。因此,地高辛标记的 DNA 探针经济,实用。

目前常用于 ILT 诊断的方法有病毒的分离,ELISA,琼脂扩散等。病毒的分离法准确,但需时长(一般要 5 d 左右)。ELISA 不能检测出潜伏感染的病毒,并且常受非特异性因素的影响。琼脂扩散的敏感性差(卡尔尼克,1991)。Keam 等(1991)报道,ILTV DNA 核酸探针能检出潜伏感染的 ILTV,并且能检出 $0.01~\mu_{\rm g}$ 的 ILTV DNA。因此,gB 基因探针在ILTV 的鉴别上无疑是一种特异、敏感、快速的方法。

致谢 郭培宣教授赠送 pILgB 质粒和 ILTVDNA7 \sharp ; 陈金顶老师提供有益的帮助,在此一并表示感谢。

参考文献

王永山,周宗安,翟春生,等. 1994. DIG 一标记鸡传染性法氏囊病病毒 cDNA 探针的制备. 中国 畜禽传染病、 $75(2):52\sim54$

卡尔尼克 B W 主编, 1991, 禽病学, 第9版, 高福等译, 北京:北京农业出版社, 419~426

张绍杰,于 力,宋 程,等. 1996. 鸡传染性喉气管炎病毒中国王岗株糖蛋白 gB 基因克隆及鉴定.中国兽医科枝, 26(9); $20\sim21$

萨姆布鲁克 J,弗里奇 E F,曼尼阿蒂斯 T,等. 1992. 分子克隆— 实验指南. 第 2 版. 金冬雁等 译. 北京: 科学出版社,55 ~ 56

童光志,李峰,王玫,等. 1992. 鸡传染性喉气管炎病毒核酸探针的制备及特异性鉴定. 兽医大学学报, 12(3): 231~234

蔡宝祥, 沈正达, 盛佩良. 等编著. 1980. 家畜传染病学. 第 2 版. 北京:农业出版社, 361~363 Guo P X, Scholz E, Ture K J, et al. 1993. Assembly Pathway of Avian Infectious Laryngo tracheitis Virus. Am J Vet Res, 12(54): 2031~2039

Guy, J.S., Barnes H.J., Smith L. et al., 1991. Increased Virulence of Modified—Live Infectious Laryn-?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.

- gotracheitis Vaccine Virus Following Bird—Bird Passage. Avian Diseases 35: 348~355
- Hitchner S B, Shea C A, White P G. 1958. Studies on a Serum Neutralization Test for the Diagnosis of Laryngo tracheitis in Chickens. Avian Diseases 2: 258 ~ 269
- Hughes C S, Jones R C. 1988. Comparision of Cultural Methods for Primary Isolation of Infectious Laryngotracheitis Virus from Field Material. Avian Pathol, 17: 295 ~ 303
- Hughes C S, Williams R A, Gaskell R M, et al. 1991. Latency and Reactivation of Infectious Laryngotracheitis Vaccine Virus. Arch Virol, 121; 213~218
- Keam L. York J J, Sheppard M, et al. 1991. Detection of Infectious Laryngotracheitis Virus in Chickens Using a Non—radioative DNA Probe. Avian Diseases, 35: 257 ~ 262
- Kongsuwan K, Prideaux C T, Johnson M A, et al. 1991. Nucleotide Sequence of the Gene Encoding Infectious Larvngotracheitis Virus Glycoprotein B. Virology, 184: 404 ~ 410
- Noda M, Miura K, Yamanaka K, et al. 1990. Hemagglutination with Avian Infectious Laryngotracheitis Virus. Arch Virol 114: 137 ~ 142
- Scholz E. Porter R E. Guo P X. 1994. Differential Diagnosis of Infectious Laryngotracheitis from other Avian Respiratory Disease by a Simplified PCR Procedure. J Virological Meth, 50: 313 ~ 322
- York J. J. Fahey K. J. Bagust T. J. 1983. Development and Evaluation of an ELISA for Detection of Antibody to Infectious Laryngotracheitis Virus in Chickens. Avian Diseases 27(2): 409 ~ 421
- York J. J. Fahey K. J. 1991. Vaccination with Affinity—purified Glycoproteins Protects Chickens agianst Infectious Laryngotracheitis Herpesvirus. A vian Pathol. 20: 693 ~ 704

PREPARATION AND SPECIFICITY OF INFECTIOUS LARYNGOTRACHEITIS VIRUS GLYCOPROTEIN B GENE PROBE

Guo Xiaofeng

(Dept. of Veterinary Medicine, South China Agr. Univ., Guangzhou, 510642)

Abstract

The plasmid(pILgB) with Infectious Laryngo tracheitis Virus(ILTV) glycoprotein B(gB) gene was cloned in E. coli NM 522. After amplification in LB, the plasmid was extracted and digested completely with EcoRI. The digested products were labeled with DIG—DNA labeling kit and an ILTVgB DNA probe was obtained. DNA and RNA from different avian viruses were hybridized with the labeled probe and the result indicated that the labeled probe showed positive reaction to ILTV—DNA, and no cross reaction to other avian viruses. With serially diluted DNA, the minimum quantity of DNA detected with the probe was 0.01 μ g. Three times hybridization with the same hybridization solution containing ILTVgB probe yielded identical result.

Key words infectious laryngotracheitis virus; glycoprotein B gene; DNA—probe; digoxi-