肉桂数量性状变异调查研究

黄少伟¹ 谢治芳¹ 汤松林² (1 华南农业大学林学院,广州 510642; 2 福建省华安金山林场)

VARIATION OF THE QUANTITATIVE CHARACTERS OF *Cinnamomum cassia* Presl.

Huang Shaowei¹ Xie Zhifang¹ Tang Songlin²
(1 Forestry Faculty, South China Agr. Univ., Guangzhou, 510642;
2 Jinshan Forest Farm, Fujian Province)

关键词 肉桂; 变异; 选择

Key words Cinnamomum cassia Presl.; variation; selection 中图分类号 S 722.31

肉桂 *Cinnamomum cassia* Presl. 是亚热带重要的经济树种, 开展肉桂选育种及良种繁育工作是搞好肉桂生产的基础, 探讨肉桂经济性状的变异规律, 有助于育种工作正确进行。

1 材料与方法

试验材料来自福建省国营华安县金山林场,在面积 12.8 hm²的 18 年生肉桂 6+湿地松 4 林分内,分别不同坡向坡位,设立 9 个标准地,调查肉桂 260 株,调查因子包括:树高,胸径,冠幅,枝下高,最低一个活枝往上 1 米树干内的一级侧枝数(简称分枝数),树冠上随机摘取的一个枝条,量取 4 个节间的长度(简称节间长),随机摘取 5 片成熟叶子,用游标卡尺量取叶片厚度(简称叶片厚)。内业计算单株树冠率,树冠率=(树高一枝下高)/树高。

用单因素方差分析考察性状在标准地间的差异,用主成分分析筛选重要的经济性状。相关分析及主成分分析采用标准化数据。数据标准化的计算公式为: $x_{std} = (x - \overline{x})/s$,式中, $x_{std} =$ 标准地单株某性状的标准化值,x =标准地单株某性状的观测值, $\overline{x} =$ 标准地某性状的平均值,s =标准地某性状的标准差。

2 结果与分析

2.1 7个数量性状的变异

对各性状分别计算平均值、变幅(最大值~最小值)及变动系数(C.V.),并进行单因素方差分析以确定标准地间的差异(表 1)。由表 1 可见,7 个性状的株间差异由大到小依次为: 分枝数→胸径→冠幅→树高→节间长→树冠率→叶片厚, 以分枝数的变动系数最大, 达到 45. 3%,叶片厚的变动系数最小,只有 8. 1%,可以认为, 肉桂叶片厚在株间的差异不明显。除分枝数外,其余 6 个性状在标准地间均有极显著差异。说明这 6 个性状受环境条件的影响较大,而分枝数受环境条件的影响不显著。表 1 显示,分枝数在株间差异极大,最大分枝数为 8,最小为 1。对分枝数作进一步分析,发现分枝数为 1,2 3 4 5 6,7 和 8 时,相应的株数分别为 24,61,67,51,34。16,6 和 1,说明分枝数的频数分布是正态的。

性 状	树高/m	胸径/cm	冠幅/m	分枝数	节间长/cm	叶片厚/mm	树冠率
平均值	8. 8	11.4	4.12	3. 3	16.0	1. 1	0.75
变幅	17. 0~4.0	23. 0~5.0	7.8~1.0	8 ~ 1	32.0~9.0	1.3~0.9	0. 95 ~ 0. 16
C. V/(%)	27.0	32.4	28. 6	45. 3	21. 5	8. 1	14. 6
F 值	11. 83 * *	15.83 * *	22.66 * *	1.91	15.36 * *	4.80 * *	6. 47 * *

表 1 各性状的变异情况 1)

2.2 性状间的相关

相关分析结果(表 2)表明, 树高与胸径间, 冠幅与树高及胸径间, 树冠率与树高、胸径及冠幅间均有极显著相关。说明选择高径生长量大的个体的同时, 也选择了冠幅大, 树冠长的个体, 可得到较多的枝叶量。 另外, 分枝数与胸径和冠幅呈显著相关, 表明分枝多的个体, 径生长量大, 冠幅大, 这样的个体枝叶量大。

性状	树 高	胸 径	冠幅	分枝数	节间长	
胸 径	0.668 2 * *					
冠 幅	0.542 4 * *	0.667 4 * *				
分枝数	0.025 2	0.180 1 *	0.1323 *			
节间长	0.131 2*	0.084 7	0.0639	-0.0348		
树冠率	0.435 4 * *	0.456 4 * *	0.4344 * *	-0.0512	0.0073	

表 2 6个性状间相关分析结果10

2.3 重要性状的筛选

累计贡献率/(%) 44.0756

主要因子 树高、胸径、冠幅

对上述性状进行主成分分析, 以选择重要的性状(表 3)。由表 3 可见, 前 3 个主成分集中了全部信息量的 78%, 故取前 3 个主成分作为筛选主要性状的依据。第一主成分主要由树高、胸径和冠幅 3 个生长性状共同决定, 是表示生长量的综合因子, 贡献率为 44%, 3 个生长性状的平均贡献率约为 14.7%; 第二主成分主要由分枝数决定, 贡献率 17.7%; 第三主成分主要由节间长决定, 贡献率 16.4%。从各性状的贡献率看,分枝数的重要性大于 3 个生长性状, 节间长也是较重要的性状。

农 3 0 1 1 性 从 主							
主成分	<i>Y</i> ₁	Y_2	Y 3	Y 4	Y_5	Y 6	
特征向量						_	
树 高	0. 506 9	0.1148	0.013 2	− 0 . 336 7	-0.6425	0.451 0	
胸 径	0. 542 7	-0.1023	0.040 1	- 0. 218 3	-0.0383	-0.8027	
冠 幅	0. 508 4	-0.0870	-0.0090	- 0. 193 4	0.747 4	0.371 3	
分枝数	0. 093 2	-0.8349	0.419 2	0. 292 9	-0.1381	0.1174	
节间长	0. 088 0	0.488 0	0.844 9	0. 189 9	0.063 8	-0.0152	
树冠率	0. 416 6	0.183 5	-0.3296	0. 824 5	- 0.062 8	0.020 5	
特征根	2. 644 5	1.064 0	0.985 3	0. 582 9	0.443 9	0.279 3	
贡献率/(%)	44. 075 6	17.733 1	16.421 4	9. 715 3	7.399 0	4.655 6	

61,808 7

分枝数

表 3 6 个性状主成分分析结果

87, 945 4

95, 344 4

100,000 0

78.230 1

节间长

^{1) **}表示在1%水准上显著

^{1) **}表示在1%水准上显著

3 结论与讨论

- (1) 肉桂树高、胸径、冠幅、分枝数及节间长等性状在株间的差异均很大,其中以分枝数的差异最大。在肉桂的选择上,对上述性状应予以重视。各性状的变异程度不一,可根据性状变异的大小作出选择决策。分枝数这一性状应引起特别重视。因为,分枝数的株间差异最大。
- (2) 肉桂叶片厚在株间的差异不明显。

参 考 文 献

中科院中国植物志编辑委员会. 1982. 中国植物志; 第 31 卷. 北京: 科学出版社, 223~226 陈祖沛. 1983. 南肉桂的引种栽培. 广东林业科技通讯。(1): 28~29 程必强, 许 勇, 喻学俭,等. 1989. 云南省肉桂的引种和栽培. 云南植物研究, 11(4): 433~439

(上接第125页)

高连兴. 1987. 以磁粉制动器作为加载装置的负荷测试车的性能研究: [学位论文]. 沈阳. 沈阳农业大学唐河清. 1994. 拖拉机转鼓实验台. 拖拉机与农业运输车. (5): 9~11

Lu N, Wang W X 1989. A Programmable Test System for Simulating Tractor Actual Implement Load Cycles in Field. Beijing; International Academic Publication. 808 ~ 809

A SOIL—BIN LABORATORY SIMULATED LOADING SYSTEM

Luo Xingwu Luo Xiwen Wang Weixing Zhong Guohuo (College of Polytechnic, South China Agr. Univ., Guangzhou 510642)

Abstract

A computer-controlled magnetic particle brake simulated loading system was developed for agricultural machinery experiments. The loading system included a computer, a PC—6313 interface card, a loading installation and a measuring installation. The system programme was designed with Turbo C and assembly language. A proportional feed back control method was used to improve the accuracy of the loading system. Operation was easy, using a Chinese characer menu as interface surface. Test results showed that the loading system could be used as a general—purpose tool in agricultural machinery experiments.

Key words computer—based control system; PID control; magnetic particle brake; simulated loading system