应用基因枪将蚕抗菌肽基因导入 水稻获抗白叶枯病株系 *

简玉瑜¹ 吴新荣¹ 莫豪葵¹ 陈凤珍¹ 董 春² 黄自然³ (1华南农业大学遗传工程研究室,广州 510642; 2华南农业大学资环学院; 3华南农业大学蚕桑系)

摘要 将天蚕抗菌肽 B基因应用基因枪法导入水稻发芽种胚,获得转基因植株。经 Basta 抗性鉴定,应用 PCR 技术和 Southern 印迹分折表明,抗菌肽 B基因已整合到水稻的基因组。 T_3 抗白叶枯病株系 Northern 印迹分折证明抗菌肽 B基因在 RNA 水平有表达。

关键词 天蚕抗菌肽 B 基因; 基因枪转化; 水稻; 转基因植株; 水稻白叶枯病中图分类号 S 330 ; O 78

水稻是世界上最重要的粮食作物之一。应用基因工程技术,培育高抗、优质新品种,创造出传统育种方法难于获得的,具有重要经济价值的新种质。自 Zhan (1988)成功地获得水稻转基因植株以来,水稻的遗传转化技术逐渐完善和发展,人们希望利用基因工程技术达到上述目的。本研究报导 1994~1996 年采用基因枪法将天蚕抗菌肽 B 基因导入水稻,获抗白叶枯病转基因植株,并观察转基因第一代、二代株系抗白叶枯病情况。

1 材料与方法

1.1 供试品种

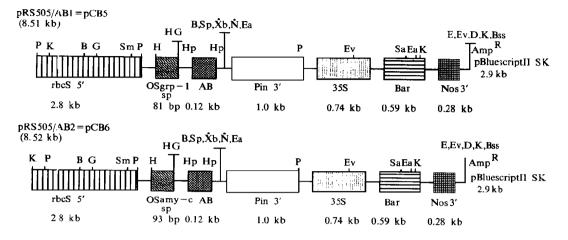
4个籼稻品种:两个高感白叶枯病品种 TN_1 和金钢 $_{30}$,以及 IR_{24} 和观 $_{8}$ 。

1.2 培养基

 N_6^{1} — N_6+2 mg/ L K T+0.5 mg/ L NAA; N_6^{2} — N_6+10 mg/ L K T+0.5 mg/ L NAA; MS₁— MS+2 mg/ L 2, 4—D; MS₂— MS+2 mg/ L 2, 4—D+1 mg/ L K T+0.5 mg/ L NAA;

1.3 供体 DNA

基因枪用天蚕抗菌肽 B 基因 pCB5、pCB6 质粒,以 pRS505 为载体,该质粒有 rbeS 和 358 两个启动子,有富甘氨酸细胞壁蛋白信号肽或 α — 淀粉酶基因信号肽为增强子(Sp),以 Bar 基因为选择标记,总长 8.51 ~8. 52 kb,由中国水稻所黄大年先生惠赠。质粒结构见图 1。


1.4 基因枪转化

采用中山大学生物工程研究中心制作火药推进基因枪, DNA 包裹的钨粒制备参照 Cao (1990)的方法。以 TN_1 、观8 及金钢303 个品种的发芽种胚、未成熟胚和愈伤组织为靶组织。外植体轰击后转入诱导培养基(MS_2),暗培养 7 d, 后转到 4 mg/L Basta MS_2 筛选 30 d, 将愈伤

¹⁹⁹⁷⁻⁰⁴⁻²⁹ 收稿 简玉瑜, 女, 65 岁, 研究员, 博士生导师

^{*} 广东省 八五'攻关,广东省科学基金,高校博士点基金资助项目,并曾得到 UNEP 通过中国 微生物

组织转到分化培养基 (N_6^1,N_6^1) 。当愈伤组织开始分化,转到含 4 或 8 mg/L Basta N_6^1,N_6^1 再筛选 20 d,将苗转至无激素 N_6 培养基,20 d 后移入盆中。

AB: 天蚕抗菌肽 B 基因; Bar; 编码 PPT 乙酰转移酶的基因

OSgrp-1 Sp. 水稻富甘氨酸细胞壁蛋白基因信号肽 OSamy-c Sp. 水稻 $\alpha-$ 淀粉酶基因信号肽 bcS 35 S. 启动子; Pin , Nos 终止子

I; Xb=XbaI; N= NotI; P= PstI; G= BglII; H= Hind III; B= Bε 图 1 质粒 pRS505(pCB5/pCB6) 的基因结构及酶切位点图

1.5 转基因水稻植株分子检测

- 1.5.1 水稻 DNA 的抽提 参照 McCouch 等(1988)方法抽提抗性愈伤组织、转基因植株, 转基因植株后代叶的 DNA。
- 1.5.2 夭委抗菌肽 B 基因扩增引物 1994~1995 年天蚕抗菌肽 B 扩增引物 1 与 2 为(5'— ATGAATTTCTCAAGGATATTTTC— 3'和 5'— AATAGGATCGC-GAAACCGAAGCGGATT—3')。引物由黄自然教授提供。1996~1997 年天蚕抗菌肽 B 扩增引物 1 与 2 为(5'— AAATGGAAAGTTTTCAAGAAAATCG— 3'和 5'— ACCAA-GAGCTTTAGCTTCACCCAG—3')。根据谢毅等(1990)合成抗菌肽 B 基因序列设计,由上海Sangon 生物工程公司合成。
- 1.5.3 DNA 斑点杂交、Southern 及 Northern 印迹分析 DNA 斑点杂交, 分别抽提质粒及 抗性愈伤组织 DNA 点于尼龙膜上, 作处理后进行杂交, 经洗膜压 X 光片显影。

转基因植株当代 Southern 印迹法参照 Bothwell(1990)方法进行。用限制性内切酶 Pst I 酶切。转基因的 T_1 和 T_2 抗白叶枯病的株系的 DNA 应用 PCR 技术检测,参照 Sambrook (1989)的方法. 以水稻总 DNA 为模板,反应总体积 $25~\mu$ L。扩增条件为. 热启动, $94~^{\circ}$ C 1. $5~\min$. $94~^{\circ}$ C 45 s, $64~^{\circ}$ C 1 min, $72~^{\circ}$ C 2 min, $38~^{\circ}$ C $1~\min$

1.6 转基因后代种植及白叶枯病抗病检测

1995、1996 年晚造盆栽种植 T_1 305 株, 种子先进行 Basta 发芽筛选, 把抗 Basta 的苗盆 栽, 插秧后一个月用白叶枯病菌株 (IV 型 X_{00-812})剪叶法接种, 7 d 测量病斑长度, 21 d 调查 发病情况并分级。1996 年早造对转基因 T_2 在田间单株小区种植, 20 个株系 404 株, 以

TN」、IR24、金钢30为感病品种对照,TKM6为抗病对照,于孕穗期接种,测定TN」转基因TL、 T2对白叶枯病的抗病性。

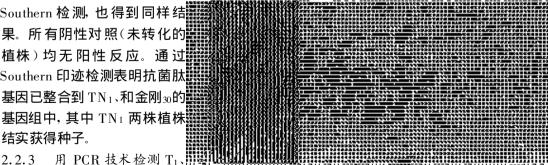
结果 2

2.1 基因枪的转化及转化体的获得

以基因枪转化 pCB5, pCB6 质粒的 DNA ,结果见表 1。3 种外植体,第一次筛选后,抗性 愈伤组织的发生率以愈伤组织的高:第二次筛选,观。发芽种胚抗性植株最多;但经分子检测 未获转基因植株。而 TN 发芽种胚 5 株抗性植株, 有 3 株为阳性。

外植体	品种	转化组	一次筛选存活	抗性愈伤	两次筛选	Southem 印迹	转基因	
		织数	愈伤组织数	组织率	成苗数	检测样品数	植株数	
发芽种胚	观 $_8$	824	98	11. 9	26	9	0	
	TN_1	450	36	8.0	5	5	3	
	金钢30	846	58	6. 9	0	0	0	
未成熟胚	观 $_8$	245	21	8.6	9	0	0	
	TN_{1}	137	9	6 6	0	_	_	
	金钢30	87	13	14. 9	2	_	0	
愈伤组织	观 $_8$	212	43	20. 3	3	_	_	
	TN_{1}	42	5	11. 9	0	_	_	
	金刚30	154	27	17. 5	5	5	1	

表 1 基因检转化筛选及检测结果


2.2 转化植株分子检测结果

- 2.2.1 斑点杂交分析 对转化获得的抗性愈伤组织的 DNA 作斑点杂交分析, 共检测 6 个 样品,均为阳性。
- 2.2.2 Southern 印迹分析 首先对斑点杂交呈阳性的 6 个样品进行 Southern 印迹分析, 结果 TN12个、金刚301个样品呈阳性。 其次检测 Basta 抗性植株 19株, 结果有 4株呈阳性 (TN₁3 株, 金刚30 1 株)。在呈阳性的 TN₁ 植株中, 再选 2 个样品重新抽提 DNA, 再次用

Southern 检测,也得到同样结果 果。所有阴性对照(未转化的 植株)均无阳性反应。通过 Southern 印迹检测表明抗菌肽 基因已整合到 TN 1、和金刚 30的 基因组中, 其中 TN1 两株植株 结实获得种子。

T2 抗性植株 以未处理水稻 植株 DNA 为阴性对照,以纯化

质粒 DNA 为阳性对照,以抗菌 肽 B 基因的引物用 PCR 技术 检测抗性株系,结果见图 2。

1. 未转化植株对照; 2. TN₁-1-11; 3. TN₁-1-18; 4. TN₁-2-50; 5. TN₁-1-20; 6. TN₁-2-9; 7. TN₁-1-1; 8. 质粒阳性对照; 9. pBR322/HaeIII 分子量参照物

ournal Electr图n2c PENii.转基因后优植株的 PGRt分析served.

图 2 可见, 阴性对照未出现扩增带, 阳性对照出现电泳条带, 分子量约为 110 bp, 其分子量与 予期的 DNA 扩增片段长度 108 bp 一致。检测 12 个样品 9 个具有特异扩增条带(其中 T_2 抗白叶枯病株系, 8 个有5 个阳性; 2 个抗性与对照相仿的有1 个阳性。 T_1 高抗2 个单株, 均 为阳性。)

对PCR 阳性植株的总 DNA 用 HindIII 酶切后进行 Southern 印迹分析, PCR 阳性植株 多数出现阳性结果(图 3),表明整合的抗菌肽 B 基因能稳定遗传。选取 TN_1 转基因 T_2 抗病 性强、PCR及Southern 印迹阳性植株2株,剪取 T3 株系叶片,进行 Northern 印迹分析,结果 其中一个株系有特异 m RNA 表达(图 4), 分子长度为 400~600 bp。证明抗菌肽基因遗传到 T₃代,并在 RNA 水平上得到表达。

探针为天蚕抗菌肽 B 基因序列, HindIII 酶切 DN A. 1. TN , 探针为天蚕抗菌肽 B 基因序列; 1. 未转化植株对照; 2. -2-20; 2. TN₁-2-12; 3. TN₁-2-35;

4. TN₁-2-9; 5. 秋桂矮 11 的抗性愈伤组织; 6. 未转化植 株对照; 7. 质粒阳性对照

图 3 转基因后代植株基因组 DNA 的

Southern 印迹分析

2.3 转基因后代对白叶枯病抗病性检测

1995、1996 年晚造对 TN1 转基因 T1305 株进行 Basta 发芽筛选,75 % T1 抗 Basta。 插秧 后一个月用白叶枯病菌接种。 T_1 对白叶枯病具有一定的抗性,病斑长度缩短, T_1 中 23% ~ 25%株系抗级比对照高, 其中 17%株系抗级显著提高, 收获了 T₁种子。

1996 年早造对 TN_1 转基因的 T_2 白叶枯病抗性作鉴定。 T_2 平均病级都为 2 ~ 3 级, 抗 病类型在中抗(mR)和中感(mS)之间,而对照品种 TN,平均级数为 4~5 级,属感(S)和高感 (hS)类型,见表 2。

从调查结果看, T2 病斑长度比对照缩短,病级比对照降低,表现出抗菌肽转基因水稻对 白叶枯病抗性较起始品种明显提高。但是,各植株间的抗病性反应有差异。

TN₁-2-9的T3株系: 3. TN₁-1-11的T3株系

图 4 转基因水稻总 RNA 的 Northern 印迹分析结果

株系	病斑平均长度 ¹⁾ / cm	株系	病斑平均长度/cm
TN ₁ -1-1	1.88	TN ₁ -2-3	1. 80
$TN_1 - 1 - 5$	2.00	$TN_1 - 2 - 7$	1. 09
$TN_1 - 1 - 9$	2.05	$TN_1 - 2 - 9$	1. 09
$TN_1 - 1 - 11$	1.67	$TN_{1-} = 2 - 10$	1. 11
$TN_1 - 1 - 12$	1.96	$TN_1 - 2 - 12$	2. 70
$TN_1 - 1 - 18$	1.17	$TN_1 = 2 - 15$	1. 65
$TN_1 - 1 - 19$	1.30	TN_12-17	0. 96
$TN_1 - 1 - 20$	2.73	$TN_1 - 2 - 20$	1. 14
$TN_1 - 1 - 22$	1.99	$TN_1 - 2 - 21$	1. 47
$TN_1 - 1 - 24$	2.15	$TN_1(CK)$	2. 67

表 2 TN₁ 转基因 T₂ 株系对白叶枯病的抗性测定结果

3 讨论

3.1 基因枪转化效率

应用天蚕抗菌肽 B 基因 pCB5. pCB6 质粒直接转化发芽种胚, 经 Basta 筛选, 获得抗性植株 50 株, 经 Southern 印迹分折, 有 4 株呈阳性。基因枪转化受体类型广泛, 操作简便, 迅速, 外源 DNA 用量少; 但基因枪的物理因素如 DNA 浓度, 微粒的数量、直径, 火药的种类、数量, 档板与样品的距离等对转化均有影响。 作者使用的是国产火药推进基因枪, 轰击参数不易控制, 气流的冲击, 微粒分布不均匀, 火药污染, 枪筒扭曲, 均影响导入效率, 容易出现嵌合体。据 Li(1993)报导用 Bio-Rad PDS 1000/He 基因枪转化率较高, 如建立严格筛选程序, 85%的抗性植株是转基因植株。

3.2 两种抗菌肽基因对比

天蚕抗菌肽 B 基因和柞蚕抗菌肽 D 基因密码子不同。天蚕抗菌肽 B 基因化学合成选用是植物偏爱的密码子(谢毅等, 1990),由中国水稻所提供的质粒是专门为水稻而设计的,分别与 OSgrp-1 或 OSamy-c 信号肽序列嵌合构建,以具有叶片组织特异性表达活性的 bcS 为启动子,可能会促进转基因水稻中抗菌肽基因的高效表达并分泌到胞外,起到杀菌作用。从几年试验结果看,两种基因进行转化,由于天蚕抗菌肽 B 基因密码子设计合理,与水稻基因组整合效率较高。而柞蚕抗菌肽 D 基因化学合成选用酵母常见的密码子(徐飞等, 1988),含有 CaMV35S 启动子,带有 NpT II 选择标记,用卡那霉素筛选,对水稻愈伤组织分化影响大,很难获得绿色植株,几年未获转基因植株。抗菌肽 B 基因用 Basta 筛选,对水稻再生影响不大,可获得结实的转基因植株。因此作者认为在水稻转化中天蚕抗菌肽 B 基因较柞蚕抗菌肽 D 基因好。

3.3 抗菌肽基因在转基因植物中的表达与抗病性

抗菌肽类多肽是昆虫体内经诱导产生的免疫产物,具有广谱杀菌作用。董春(1992)研究柞蚕抗菌肽对水稻白叶枯病的作用机理,应用柞蚕抗菌肽对6株国际上分离的和中国强致力白叶枯菌株进行抑菌试验,均证实有明显的抑菌作用。用抗菌肽处理白叶枯病菌后用电镜观察,发现处理30 min 后,菌体破裂,内含物渗出死亡。水稻白叶枯病是一种典型的微

^{1):} 平均病斑长度为接种后7 d 调查

管束病害, 其致病作用主要是破坏水稻植株微管束组织, 使其丧失水分运输能力。Florack 等 (1995)指出: 作物抗细菌病的遗传过程中应用抗菌肽 B 基因取决于 3 个因素: 即基因表达,抗菌肽的合成水平要足以杀死病菌以及抗菌肽分泌到病菌生存地方。我们研究中发现 TN_1 的转基因 T_1 及 T_2 对接种的白叶枯病菌表现出一定的抗性, 病斑长度缩短, 病级减轻, 这都可能是抗菌肽 B 基因表达并分泌到胞外的结果。作者以 PCR 检测 8 个抗病 T_2 株系, 5 个阳性; 2 个与对照病级一样的株系, 也有 1 个阳性; 高抗的 T_1 单株, 抗菌肽基因信号明显。Southern 印迹检测结果表明, 抗菌肽基因已整合到水稻基因组。Northem 印迹检测, 抗级提高的 2 个转基因的 T_3 株系有一株系有 mRNA 表达(表 3)。作者的结果与抗菌肽 B 基因、Shiva—1 基因转烟草、马铃薯、水稻结果相一致(Hightower et al, 1994; Jia et al, 1996; 王志兴等, 1996; 苗大年等, 1997)。

表 3 IN ₁ 特基囚后代植株的机祸性釜疋与分于位测结果总结表。 ————————————————————————————————————							
++ 7 7	抗病性	测定情况	分子检测				
株系	T ₁	T_2	PCR ^A	Southern blot ^A	Northern blot ^B		
TN ₁ -1-1	Н	Н	+	+			
$TN_1 - 1 - 9$	Н	Н	+				
$TN_1 - 1 - 11$	Н	Н	+		- (?)		
$TN_1 - 1 - 18$	Н	Н	+	+			
$TN_1 - 1 - 19$	S	Н	+				
$TN_1 - 1 - 20$	S	S	+				
$TN_1 - 2 - 9$	Н	Н	+	+	+		
$TN_1 - 2 - 12$	Н	S	_	+			
$TN_1 - 2 - 20$	Н	Н	_	+			
$TN_1 - 2 - 21$	Н	Н		+			
$TN_1 - 2 - 35$	Н		+	+			
$TN_1 - 2 - 50$	Н		+				
$TN_1 - 2 - 3$		Н	_				
TN ₁ -2-17		Н		+			

表 3 TN, 转基因后代植株的抗病性鉴定与分子检测结果总结表 1)

致谢 感谢中国水稻所黄大年先生提供抗菌肽 B 基因 pCB5、pCB6 质粒和资料; 感谢本室庄楚雄博士在技术上的指导和帮助; 感谢杨跃生, 张伟, 陈远玲, 何汉生, 王润华参加部分工作。

参考文献

王志兴, 贾士荣. 1996 抗菌肽分泌型载体的构建及马铃薯中蛋白的胞外分泌。农业生物技术学报, 4(3): 277~286

徐 飞,施 文,王启松,等. 1988. 柞蚕抗菌肽 D 基因的合成. 科学通报, 21:12~15

黄大年, 朱 冰, 杨 炜, 等. 1997. 抗菌肽 B 基因导入水稻及转基因植株的鉴定. 中国科学(C 辑), 27 (1): $55\sim62$

,谢。4毅,闵永洁,贾士荣,等,1990 天蚕抗菌肽 B 基因的化学合成及克隆,生物工程学报,6(4): 311~ http://

¹⁾ H: 与对照 相比, 抗病能力提高; S: 与对照 相比, 抗病能力未提高; A: 检测植株为 T_1 代; B: 检测植株为 T_3 代

315

- 董 春,何汉生,王润华,等. 1992 柞蚕抗菌肽对水稻白叶枯病的抑制作用. 华南农业大学学报,13 (4):58~62
- Sambrook J, Fritsch E F, Maniatis T, 著. 1989. 分子克隆, 实验指导. 金冬雁, 黎孟枫译. 北京: 科学出版社, 1~1062
- Bothwell A. L. George D. Yancopoulos, Frederick W. Alt. 1990. Methods for cloning and analysis of eukaryotic genes. Boston: Jones and Bartlett Publishers, 1~293
- Cao J, Wang Y C, Klein T M, et al. 1990. Transformation of rice and maize using the particle gun method. In: Lamb C J, Beachy R N, eds. Plant Gene Transfer. New York; Wiley—Liss, 21~23
- Florack D, Allefs S, Bollen R, et al. 1995. Expression of giant silkmoth cecropin B genes in tobacco. Transgenic Research. 4:132 ~ 141
- Hightower R. Baden C. Penzes E 1994. The expression of eccropin peptide in transgenic tobacco does not resistance to Pseudomonas syringae pv tabaci. Plant Cell Reports 13: 295~299
- Jia S R, Qu X M, Feng L X. 1996. Transgenic potato for enhanced resistance to bacterial wilt. In: Xu Z H, Chen Z H, eds. Proceedings of 2nd Asia—Pacific Conference on Plant Cell and Tissue Culture, Beijing: China Forestry Publishing House, 183~188
- Li L. Qu R. Kochko A D, et al. 1993. An improved rice transformation system using the biolistic method. Plant Cell Reports 12: 250~255
- McCouch S R, Kochert G, Angles R, 1988. Molecular mapping of rice chromosomes. Theor Appl Genet, 76: 815 ~ 829
- Zhan W, Wu R. 1988. Efficient regeneration of transgenic plants from rice protoplast and correctly regulated expression of the foreign gene in the plants. Theor Appl Genet, 76: 835 ~ 840

TRANSFER OF CECROPIN B GENE INTO RICE (Oryza sativa L.) BY THE BIOLISTIC METHOD AND TRANSGENIC PROGENY LINE FOR RESISTANCE TO BACTERIAL BLIGHT

- Jian Yuyu WuXingrong MoHaokue Chen Fengzhen Dong Chun Huang Ziran Univ., Guangzhou, 510642;
 - 2 College of Natural Resources & Environment, 3 Dept. of Sericulture, South China Agric. Univ.)

Abstract

Transgenic plants transformed with cecropin B gene using biolistic method were regenerated from germinative embryo of rice. Herbicide basta selection, PCR technique and Southern blot analysis confirmed that stable integration of cecropin B gene into the rice genome had occurred. Results from Northern blot analysis of transgenic T₃ lines for resistance to rice bacterial blight domonstrated that the cecropin B gene was inherited by successive generations up to the T₃ progeny and expressed at the mRNA level.

Key words Cecropin B gene; Biolistic Transformation; *Oryza sativa* L.; Transgenic plants; Bacterial blight of rice (*Xanthomonas compestris* pv. *oryzae*)