饲粮添加胸腺肽对肉鸡增重、 免疫及内分泌的影响^{*}

余 斌 傅伟龙

(华南 农业大学动物科学系,广州,510642)

关键词 胸腺肽;免疫;生长激素;三碘甲腺原氨酸;甲状腺素中图分类号 S 816.7

自 Miller 和 Pierce 分别在小鼠和家兔中发现,去胸腺的新生动物,细胞免疫功能障碍,循环 T 淋巴细胞数目降低,从而明确了胸腺与淋巴系统发育的重要关系(姚志建,1985年)。 Osoba 和 Miller 将胚胎或初生动物的胸腺装在扩散盒内,并安放于摘除胸腺的动物腹腔中,可看到其免疫功能恢复,提示这可能是胸腺分泌的体液因子起作用。而后许多研究者先后分离提纯出影响淋巴细胞分化,成熟的胸腺因子,并人工合成活性片断。关于禽类胸腺肽的生物学功能,Murthy等(1992)报道用鸡的胸腺组织提取液处理雏鸡,3周后外周血淋巴细胞对植物血凝素(PHA)和刀豆素(CONA)诱导的增殖反应显著高于对照组。王兴金等(1993)报道用鸡的胸腺提取液喂鸡,能促进外周血淋巴细胞的生长。本文研究胸腺肽,对肉鸡增重、免疫和内分泌的影响及其可能作用机制,为胸腺制剂在畜牧兽医领域的应用提供依据。

1 材料与方法

1.1 粗制胸腺肽的制备、含量测定

粗制胸腺肽的制备参照 Filatov 的方法 (Pridybailo, 1991)。本实验粗制胸腺肽含量为 1.328 g/L。

1.2 饲养试验

试验动物选用 1 日龄健康无病的 Avain 鸡 160 只, 随机分为 4 组, 每组 40 只, 试验用的基础日粮含代谢能 $12 \sim 13$. 4 M J/kg, 粗蛋白 $21\% \sim 23\%$ 。第 I 组为对照组, 饲喂基础日粮,

¹⁹⁹⁷⁻⁰⁵⁻¹⁸ 收稿 余 斌, 男, 27 岁, 硕士, 现在深圳市农牧实业公司工作

第 $II \times III \times IV$ 组为试验组, 在基础日粮中分别添加粗制胸腺肽, 剂量分别为 $0.664 \times 1.328 \times 2.656 \text{ mg}/只 °d$, 添加日期为 $1 \sim 10$ 日龄。

鸡只采用地上铺垫料平养,自由采食及饮水,全日制光照, $1\sim20$ 日龄用红外线灯保温,并按鸡场常规免疫接种。 1 日龄时各组随机抽 10 只鸡做翅号,以便日后固定采血。 14 日龄开始,每隔 1 周各组鸡逐只称重,称重前一天晚断料,次日早上 $9:00\sim11:00$ 对各组有翅号的鸡跖静脉采血 2 m L。 肝素钠抗凝,2500 r/min 离心 15 min,吸取上层血浆,-20 °C保存。试验期 42 d。

1.3 测试指标

- 1.3.1 胸腺 肽对 A vain 鸡增重的增物 每周称鸡只体重 1次, 计算增重, 料肉比、成活率等。
- 1. 3. 2 胸腺肽对Avain 鸡免疫的影响 测定外周血 T 淋巴细胞百分率。测定方法参照 T 淋巴细胞酸性 α —醋酸苯酯酶的测定方法 (ANAE)(刘玉斌, 1989),并做如下改动。(1)不分离淋巴细胞,趾静脉采血后直接制血涂片。(2)制片不固定,自然干燥后进行孵育。(3)孵育液中 α —醋酸苯酯酶浓度由 2%改为 4%。(4)孵育时间 2.5 h。
- 1.3.3 血浆中激素浓度的测定 采用放射免疫分析法(RIA)。 血浆中 T_3 、 T_4 、GH 的测定试剂盒分别用北方免疫研究所研制的 $I^{125}-T_3$ 、 $I^{125}-T_4$ 、 $I^{125}-GH$ 试剂盒。操作方法按各药盒说明书进行。

1.4 数据处理与统计

各组间的体重、T 淋巴细胞百分率用多重比较法检验,成活率采用两个样本百分数差异性检验,血浆中 T_3 、 T_4 、GH 浓度用 Duncan 氏检验。数据以平均值 \pm 标准差($X\pm SD$)表示。

2 结果

2.1 胸腺肽对 Avain 鸡增重、料肉比和成活率影响

由表 1 可知,1 日龄时各组鸡体重差异不显著 (P>0.05),14 日龄时,各试验组增重均大于对照组,但差异不显著 (P>0.05),21 日龄时,第 III、IV组体重显著高于对照组 (P<0.05)。至 42 日龄时,各组鸡增重平均依次为:1 652.92、1 739.01、1 849.74、1 868.27 g/只,第 II、III、IV组分别比对照组多增重 86.09、196.82、215.35 g/只。可见,饲喂胸腺肽可促进肉鸡增重,其中以剂量为 1.328 和 2.684 mg/只 d 的试验组增重效果好。

40 Pil			体	重 ¹⁾ /g°只 ⁻¹		
组别	1 日龄	14 日龄	21 日龄	28 日龄	35 日龄	42 日龄
I	49. 28 ±4. 12	358 72±63.61	603. 01±147. 76a	864. 22±143. 47a	1 325. 63 ±281. 24a	1 702. 20±595 80a
II	49. 32 ± 3 . 87	$368\ 03\pm31.92$	646 69±62. 52ac	915. 73±159. 92ac	1 373. 17 \pm 219. 08 ac	1 788. 33 \pm 347. 69ac
III	49. 11 \pm 4. 77	369. 84 ±40. 91	659 52±82. 23ac	961. 06±155. 92be	1 417. 71 \pm 251. 35be	1 898. 85 \pm 342 61 bc
IV	48. 75 \pm 3. 78	373 74±40.05	665 84±94. 27ac	982. 84±146. 19bc	1 426. 40 \pm 214. 87 bc	1 917. 02 \pm 274 74bc

表 1 各组鸡不同日龄时的体重

由表 2 可知,由 1 日龄至 42 日龄,除 IV组在 29~35 日龄、II 组在 36~42 日龄时料肉比比对照组稍高外,其它阶段各试验组料肉比均低于对照组,表明试验组饲料报酬率有所改

¹⁾ 凡组间字母相同或不标者差异不显著, 组间字母不同者差异显著

善。	$\ \cdot\ $	IV组成活率均高于对照组,	但差异不显著(P>0.	05).
----	-------------	---------------	-------------	------

衣 4 台组冯小问口般的科例比、成为华	表 2	各组鸡不同日龄的	料肉比、原	戓活率
---------------------	-----	----------	-------	-----

	不同日龄料肉比							
组别	1 ~ 14	15~21	22 ~ 28	29 ~ 35	36~42	1~42	死亡数	成活率/(%)
	日龄	日龄	日龄	日龄	日龄	日龄		
I	1. 37	1. 81	1. 96	2. 13	2 32	1. 96	3	92 5
II	1. 23	1. 67	1. 73	1. 80	2 36	1. 91	2	95. 0
\coprod	1. 24	1. 61	1. 72	1. 91	2 08	1. 82	1	97. 5
IV	1. 27	1. 65	1. 72	2. 03	2 28	1. 89	2	95. 0

2.2 胸腺肽对外周血 T 淋巴细胞百分率的影响

组别	 样品数 -	T 淋巴细胞百	i分率 ¹⁾ /(%)
	作十口口女人	23 日龄 38 日龄	
I	8	43. $08\pm6.13a$	56. 50±9. 44
II	8	51. 75±7. 25b	57. 08 ± 6.48
III	8	$55.83 \pm 6.84 \mathrm{bc}$	60. 83 ± 6.86
IV	8	$56.08\pm7.01\mathrm{bc}$	57. 47 ± 7 . 48

表 3 23、38 日龄时 T 淋巴细胞百分率

2.3 胸腺肽对血浆中 GH 浓度的影响

由表 4 可知, 各组鸡血浆 GH 浓度在不同日龄差异不大, 但 $14 \sim 42$ 日龄 3 个试验组血浆 GH 的平均浓度均不同程度高于对照组。但差异不显著(P > 0.05)。

表 4 不同日龄鸡血浆中 GH的浓度

组别	GH 浓度 ¹⁾ /μg° L ^{−1}					
= 五刀リ	14 日龄	21 日龄	28日龄	35 日龄	42 日龄	平均值
I	1. 47±0. 15(6)	1. 43±0. 09(6)	1. 30±0. 16(6)	1. 15±0. 18(6)	1. 17±0. 15(6)	1. 30±0. 15(30)
II	1. 59±0. 18(5)	1. 54±0. 28(6)	1. 48 ±0. 24(6)	1. 09±0. 09(6)	1. 10±0. 15(5)	1. 36±0. 25(28)
\coprod	1. 61±0. 15(6)	1. 57±0. 11(5)	1. 61±0. 30(6)	1. 17±0. 21(6)	1. 13±0. 16(6)	1. 42±0. 25(29)
IV	1. 54±0. 20(6)	1. 42±0. 16(6)	1. 41±0. 16(6)	1. 29±0. 12(6)	1. 09±0. 11(5)	1. 35±0. 17(28)

¹⁾括号内的数字为样品数

2.4 胸腺肽对血浆中 T3 浓度的影响

由表 5 可看出, 28 日龄前各组血浆 T_3 浓度随日龄的增大逐渐升高, 至 28 日龄时达到峰值, 而后下降。 $14 \sim 28$ 日龄时, 试验 II、II组 T_3 浓度均高于对照组, 但各组 T_3 浓度差异不显著(P > 0. 05)。

¹⁾ 凡组间字母相同或不标者差异不显著, 组间字母不同者差异显著

40 DI		T ₃ 浓度 ¹	$^{\circ}/\mu_{\mathrm{g}} \cdot \mathrm{L}^{-1}$	
组别	14 日龄	21 日龄	28 日龄	35 日龄
I	$0.97\pm0.17(8)$	1. 27 ±0. 19(8)	1. $77 \pm 0.57(7)$	0.70±0.24(8)
II	1. 14±0. 29(8)	1. $24 \pm 0.20(7)$	1. $99 \pm 0.78(8)$	$0.65\pm0.19(8)$
III	1. 16±0. 28(8)	1. 59±0.81(8)	2 01 ±0 63(8)	0 73±0 16(8)
IV	1. 15 ±0. 24(7)	1. 48 ±0 21(8)	1. 68 ±0. 43(8)	$0.62\pm0.11(7)$

表 5 不同日龄血浆中 T₃ 的浓度

2.5 胸腺肽血浆中 T4 浓度的影响

由表 6 可知, 14 日龄时各组 T_4 浓度很接近。21 日龄时组间 T_4 浓度差距变大, 至 28 日龄时, 第 III、IV组 T_4 浓度显著高于对照组(P > 0. 05)。

组别		T ₄ 浓度	$^{(1)}/\mu_{\rm g}^{\circ} {\rm L}^{-1}$	
纽加	14 日龄	21日龄	28 日龄	35日龄
I	23. 90 ± 9. 26(8)	17. 99±5. 81(8)	13. 33±8. 15(7)a	23. 37 ± 8. 31(8)
II	23. $91 \pm 6.01(8)$	21. $34 \pm 5.64(7)$	18 $23 \pm 5.52(8)$ ab	24. $02 \pm 5.34(8)$
III	24. 15±9. 41(7)	23. $68 \pm 5. 57(8)$	25. 28 ± 7 . $44(8)$ b	25. $79 \pm 4.82(8)$
IV	23. $44 \pm 7.71(8)$	$20.45\pm 8.84(8)$	22 $46 \pm 5.49(8) \mathrm{b}$	23. $13\pm6.26(8)$

表 6 不同日龄鸡血浆中 T₄ 的浓度

3 讨论

3.1 胸腺肽对 Avain 鸡免疫功能的影响

胸腺是中枢免疫器官,是 T 淋巴细胞分化发育的场所,它除了提供 T 淋巴细胞发育所需要的微环境外,还产生一系列的多肽激素。胸腺肽是胸腺分泌的多肽激素,这些激素影响 T 淋巴细胞的分化和成熟(Oliver et al, 1984)。本试验中 $1 \sim 10$ 日龄雏鸡饲喂胸腺肽, $23 \sim 38$ 日龄时测各组 T 淋巴细胞百分率的结果表明,胸腺肽可提高外周血 T 淋巴百分率。这与 M urthy 等(1992)的报导一致。 王兴金等(1993)用鸡胸腺提取液喂鸡,也证明可促进外周血白细胞,特别是淋巴细胞的分化增殖。 可见,胸腺肽可诱导 T 淋巴细胞分化成熟,放大成熟细胞对抗原或其它刺激物的反应,从而提高机体的免疫水平。

3.2 胸腺肽对内分泌的影响

甲状腺激素主要包括甲状腺素 (T_4) 和三碘甲腺原氨酸 (T_3) 。甲状腺激素可通过控制 RNA 和蛋白质的生物合成而促进生长发育。甲状腺激素的分泌受许多因素的调节。本试验通过饲喂胸腺肽,结果显著提高试验组 (III_1V_4) 血浆 T_4 浓度。同时,各试验组血浆 T_3 浓度有高于对照组的趋势,证明胸腺肽可加强甲状腺的功能活动。Blalock (1989) 报导,活化的 T 淋巴细胞产生促甲状腺素,从而促使甲状腺分泌 T_3 、 T_4 。据此,作者认为胸腺肽提高血浆中 T_4 浓度,可能与其提高血浆中 T 淋巴细胞百分率有关。

。有研究指出:胸腺对于脑垂体的分泌功能是不可缺少的,新生期去胸腺小鼠,其垂体组

¹⁾ 括号内的数字为样品数

¹⁾ 凡组间字母相同或不标者差异不显著, 组间字母不同者差异显著; 括号内数字为样品数

织形态学有明显改变,导致嗜酸性细胞脱颗粒,嗜碱性细胞减少,如给予胸腺提取物,垂体的组织学得到改善,垂体激素含量增加(李柏青,1989)。本次试验中,各组间生长激素浓度差异不显著,可能是由于所测样品数量少或其它未知原因所致。从总体看,各试验组 GH 平均值比对照组高,提示饲喂胸腺肽可能会促进腺垂体分泌 GH。但仍需深入研究。

3.3 胸腺肽对肉鸡增重的影响及其机理探讨

Pridbailo (1991)报导,胸腺制剂给鸡肌注或气雾,可促进鸡的生长。本试验中,自 1 日龄 在基础日粮添加饲喂胸腺肽至 10 日龄,结果在试验末期(42 日龄)各试验组增重均大于对照 组,表明胸腺肽可提高动物增重速度。关于胸腺肽促进动物增重可能源于以下两方面.(1) 胸腺肽提高机体的免疫功能,利于维持内环境的稳定。 本次试验中,胸腺肽处理后的 3 个试 验组,在 25 日龄时 T 淋巴细胞百分率显著高于对照组。在一般饲养条件下由于改善了机体 的免疫功能,提高了抗病力,缓冲了外部入侵的病原微生物造成的免疫功能紊乱,从而使机 体能集中更多的营养物质用于生长。(2)胸腺肽调节机体内分泌系统的功能,从而促进增 重。动物的生长是个复杂的动态过程,由多种因子制约,其中内分泌活动是一个重要因素。 生长激素能动员各方面的能量和原料合成组织蛋白,从而增加体细胞的体积和数量。 本次 试验中各组血浆中 GH 浓度升高虽不显著,但就总体而言,试验各组的 GH 平均浓度高于对 照组,这一结果显然与各试验组增重速度较快有关。 调节生长的另一重要激素是甲状腺激 素。本次试验各试验组甲状腺激素浓度,总的来说高于对照组,有利于动物生长。此外,生 长激素、甲状腺激素与免疫系统之间有一定关系,这些激素对某些免疫参数有促进提高作用 (Scott et al, 1985)。已有报导 GH、T3、T4 可使血液中 T 淋巴细胞总数增加(Haddad et al, 1990)。本次试验中,试验组血浆中有较高水平的 T3、T4、GH,可直接促进动物生长,也可通 过提高机体免疫功能,间接对鸡只的增重起作用。

根据本试验结果,作者认为,在雏肉鸡日粮中添加一定量的胸腺肽(适宜添加量为 1.328~2.684 mg/只°d)可调节鸡只内分泌活动,提高机体免疫功能,促进鸡只生长发育,值得进一步研究和开发。

致谢 实验过程得到张 ,、江青艳、戴远威、邱月娥等老师的指导和帮助,特此致谢!

参考文献

王兴金, 何后军, 谌南辉, 等. 1993. 胸腺提取液喂鸡的试验研究. 中国家禽, (6): 27~29

刘玉斌, 苟仕全主编. 1989. 动物免疫学实验技术. 长春; 吉林科学技术出版社, 34~36, 234~236

李柏青. 1989. 胸腺—神经内分泌网络的研究. 国外医学免疫学分册, 12(1); 25~29

姚志建,沈倍奋. 1985. 胸腺多肽结构和功能研究的进展. 生理科学进展, 16(1):52~53

Blalock J E. 1989. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physical Rev, 69: 1 ~ 32

Haddad E E Mashaly M M. 1990 Effect of thyrotropin—releasing hormone triiodothyronine, and chicken growth hormone on plasma concentration of lymphoid organs and lenkocyte the polulations in immature male chickens. Poultry Science, 222: 1353

Murthy K K, Ragland W L. 1992 Effect of thymic extract on blastongenic espones of chickens. Poultry Science, 71(2): 311 ~ 315

Oliver P. D. LeDouain N. M. 1984. A vain-thymic accessory cells. The Journal of Immunology. 132: 1748~ ?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.

1755

Pridybaio N. 1991. Thymus extract enhances vaccination effectiveness. Poultry International (7): 30 ~ 34 Scott T, Zijpp A V D, Glick B. 1985. Effect of thiouracil—induced hypothymidism on the humoral immunity of new hampshire chickens. Poultry Science. 64: 2211 ~ 2217

EFFECTS OF THYMIC PEPTIDES ON GROWTH, IMMUNOLOGICAL FUNCTION AND ENDOCRINE PROFILES IN BUOILER

Yu Bin Fu Weilong
(Dept. of Animal Science, South China Agric, Univ., Guangzhou, 510642)

Abstract

One hundred sixty Avain chickens, aged 1 day, were divided randomly into four groups; group 1 serve as control. The base diets contained metabolic energy 12.0 ~ 13.4 MJ/kg, crude protein $21\% \sim 23\%$. Thymic peptides were added to the base diets of group 2, 3, 4 at doses of 0. 664 .1. 328 and 2.656 mg/day °bird respectively from lst to 10th day. In the 42—day trial, the results showed that: 1)On the 42th day, the body weights of all the treated groups were higher than that of control, and it between group 3, 4 and group 1 was significant (P < 0.05). 2)On the 23th day, the percentage of T cells between group 2 and group 1 was different (P < 0.05), and it between group 3, 4 and group 1 was significantly different (P < 0.05). But on the 38th day the perventage of T cell between each experiment group is still higher than control, but no different (P < 0.05). 3)The concentration of plasma T₃, T₄ of group 2, 3, 4 were higher than that of control. The concentration of plasma GH of treated groups was higher than that of control, but the difference were not significant (P > 0.05).

Key words thymic peptide; immune; growth hormone; tricodothyronine (T_3) ; thyroxine (T_4)