小菜蛾产卵对寄主的选择性 及其应用初步研究 *

喻国泉 吴伟坚 古德就 张维球(华南农业大学昆虫生态研究室,广州 510642)

摘要 以广州、深圳种植的几种主要十字花科蔬菜、研究了小菜蛾对寄主的选择性. 室内试验和田间调查结果基本一致: 小菜蛾对芥菜、菜心的嗜好性最大, 对萝卜、白菜次之, 对芥蓝、花椰菜最差. 根据小菜蛾喜爱在芥菜上产卵这一特性, 进行了芥菜与芥蓝套种诱集防治小菜蛾的田间试验. 结果表明, 所有套种田中芥蓝上的小菜蛾卵数量都显著低于单种田(P< 0.05),在芥蓝生长后期, 单种田芥蓝中卵数量高出套种田近 10 倍, 芥菜中卵和幼虫数量是芥蓝中的好几十倍. 说明用芥菜这类对小菜蛾产卵引诱性较强的作物与甘蓝类蔬菜套种可以用来诱集防治小菜蛾对后者的为害.

关键词 小菜蛾;产卵选择;农业防治中图分类号 S 433.3

小菜蛾 *Plutella xylostella* (L.)是世界性分布的十字花科蔬菜重要害虫. 近年来, 其为害有不断加重的趋势, 且抗药性问题相当严重, 单纯依赖化学防治往往难以达到理想的防治效果. 因此, 研究它的其他防治手段已迫在眉睫. 60 年代以来, 化学生态学崛起并迅速发展, 越来越多的人们通过研究昆虫与植物的关系来探索害虫的防治问题. 小菜蛾的主要寄主是十字花科植物, 这与该科存在某类信息化合物有关(Gupta et al. 1960a; 1960b; Pivnick et al. 1990), 在该科植物的不同品种及同种植物的不同生长期, 小菜蛾的为害程度有所不同(吴伟坚等, 1992). 这是因为小菜蛾产卵对寄主具有选择性. 作者根据小菜蛾的产卵特性, 研究小菜蛾产卵对寄主的选择性, 从而探讨其农业防治措施.

1 材料与方法

- 1.1 小菜蛾产卵对不同蔬菜品种的选择性
- 1.1.1 供试材料 供试虫源:田间采集小菜蛾蛹,室内饲养至羽化后供试.供试蔬菜品种:选取广州常见的6种蔬菜即菜心、白菜、芥菜、萝卜、芥蓝、花椰菜,它们的品种分别为四九菜心、葵白、杂交南风芥、早萝卜、登峰芥蓝、花椰菜,种子均购自广东农科院经济作物研究所.
- 1.1.2 试验设计 分别取生长期为 20 d 的菜株在玻璃网室内进行笼罩试验. 取每种蔬菜各 1 盆随机置于 $1 \text{ m}^3 (1 \text{ m} \times 1 \text{ m} \times 1 \text{ m})$ 尼龙纱网中,接入 3 对刚羽化的成虫. 试验设 4 ~ 6 个重复,采用随机化完全区组设计. 24 h 后分别检查每盆菜上的卵量.
- 1.2 芥菜与芥蓝套种对小菜蛾种群数量的影响

试验在深圳宝安玉塘菜场进行. 试验面积约 $2~000~\mathrm{m}^2$,芥菜与芥蓝同时播种 $20~\mathrm{d}$ 后,将

芥菜移栽套种到芥蓝田中.采用随机化完全区组设计,设置两个重复,3种套种方式,即芥蓝田每隔2.5、5.0、10.0 m 栽种1 行芥菜,两株芥菜间距约40 cm,另以芥蓝单种田为对照.套种田和单种田采用相同的病虫和肥水管理措施.每隔10 d 调查芥菜和芥蓝中的小菜蛾卵和幼虫数量.

2 结果与分析

2.1 小菜蛾对不同蔬菜品种的选择性

在植物的不同发育阶段, 其外部形态和体内的生理状况会发生变化, 可能影响昆虫的产卵选择. 因此, 本文生长期分别为 20 和 45 d 的植株进行试验, 结果见表 1 和表 2.

生长期为20.4的不同具种带带由小带峨甸数景(粒/分)

		43 1	主人别力 20 u o	ソイトリロロイヤ米は	1个小米戏奶效.	里(加)血)	1 1993 0	,
_	重复	菜心	芥菜	萝卜	白菜	芥蓝	花椰菜	
Ī	1	28	12	7	4	1	2	
	2	7	20	18	1	1	0	
	3	6	12	1	3	0	0	
	4	11	6	26	9	0	0	
	平均值	13.0±5.1a	12, 5 ± 2 , $9a$	13.0 \pm 5.6a	4.3 \pm 1.7ab	$0.5\pm 0.2b$	0. 5±0. 5b	

1) 同行具相同字母者表示在 0.05 水平上差异不显著(DMRT)

从表 1 和表 2 可见, 小菜蛾产卵对十字花科不同品种蔬菜具有选择性, 用生长期为 20 和 45 d 的菜株进行试验, 结果基本一致: 小菜蛾产卵对菜心、芥菜的选择性较强, 对白菜、萝卜次之, 对芥蓝、花椰菜的选择性最弱. 经方差分析, 小菜蛾在芥菜和菜心上的产卵量明显高于芥蓝和花椰菜.

重复	菜心	芥菜	萝卜	白菜	花椰菜	
1	37	31	7	21	1	
2	43	39	15	27	3	
3	45	24	20	22	0	
4	3	33	7	5	0	
5	21	10	5	6	0	
6	19	19	27	0	5	
平均值	28.0 \pm 6.7a	26.0 \pm 4.3a	13.5 \pm 3.5a	13.5±4.5b	1.5±0.8c	

表 2 生长期为 45 d 的不同品种菜株中小菜蛾卵数量(粒/盆)1)

1) 同行具相同字母者在 0.05 水平上差异不显著(DMRT)

2.2 田间不同品种蔬菜上小菜蛾卵量分布

调查在玉塘菜场进行.选取适合的小区,各小区内有芥菜、菜心、白菜、芥蓝、西蓝花等 5种蔬菜,且各菜的生长期相近,约为 45 d,菜株高也相近.在小菜蛾产卵高峰期,调查各种蔬菜上卵的密度,结果见表 3.

表 3 田间不同品种蔬菜上的小菜蛾卵密度调查(粒/株)1)

深圳, 1993-11

广州, 1993—08

调查日期(月。日)	芥菜	菜心	白菜	芥蓝	西蓝花
10.19	0. 54 ± 0 . $16a$	0. 52 ± 0 . $13a$	$0.12 \pm 0.08 \mathrm{b}$	0.00 ± 0.00 b	$0.10\pm0.08b$
11.20	2. 42 ± 0 . $63a$	2. 76 ± 0 . $59a$	$0.52 \pm 0.14 \mathrm{b}$	$0.52 \pm 0.34 \mathrm{b}$	$0.12\pm0.07c$

¹⁾ 同行具相同字母者在 0.05.水平上差异不显著 (DMRT) ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www

从表 3 可见,在田间芥菜、菜心上小菜蛾卵密度较高,白菜、芥蓝上次之,西蓝花上最低,这与室内的产卵选择性试验结果一致.但在田间往往发现芥蓝、花椰菜等甘蓝类蔬菜的小菜蛾幼虫密度较高,据调查可能有两方面的原因:(1)甘蓝类蔬菜叶面有一层较厚的蜡质,在进行化学防治时,药液的展着效果不好,导致防效较低;(2)甘蓝类蔬菜生长期较长,有的长达 100 d 以上,而小菜蛾世代历期很短,种群不断增长导致虫口密度较高.

2.3 芥菜与芥蓝套种对小菜蛾种群数量的影响

前面试验结果已证实, 小菜蛾产卵对不同蔬菜品种具有选择性, 对芥菜的选择性明显高于甘蓝类蔬菜. 根据小菜蛾喜好在芥菜上产卵这一特性, 笔者进行了芥菜与芥蓝套种试验, 对套种田中小菜蛾的卵进行调查, 结果分别见表 4 和表 5.

表 4 不同套种田中芥菜上小菜蛾卵密度(粒/株)1)

深圳, 1993-10

播种天数⁄ d		套种间隔/ m			芥菜卵量
1曲作人女X/ (I	2.5	5.0	10	· 单种田	が来が里
25	$0.09 \pm 0.06 \mathrm{b}$	$0.11\pm0.08b$	$0.06 \pm 0.03 \mathrm{b}$	$0.17 \pm 0.09 \mathrm{b}$	$1.39\pm0.34a$
35	0. 02 \pm 0. 01 c	0. 03 \pm 0. 01c	0. 01 \pm 0. 01c	$0.32 \pm 0.13 \mathrm{b}$	$1.99 \pm 0.40a$
45	0.00 \pm 0.00c	0. 04 \pm 0. 03c	0. 08 \pm 0. 05c	$0.64 \pm 0.32 \mathrm{b}$	14. $3\pm 3.24a$
55	$0.00 {\pm} 0.00 { m b}$	0.00 ± 0.00 b	$0.00 {\pm} 0.00 { m b}$	$0.00 {\pm} 0.00 \mathrm{b}$	$1.10\pm 0.62a$
65	0.64 \pm 0.31c	0. 64 \pm 0. 33c	0. $65 \pm 0.29 c$	$5.78\pm 2.13 \mathrm{b}$	31. 3±5. 10a

¹⁾ 同行具相同字母者在 0.05 水平上差异不显著(DMRT)

表 5	不同套种田中芥蓝上小菜蛾卵密	图度(粉/株)1)

深圳, 1993—11

操動工粉/ 』		套种间隔/ m		单种田	
播种天数/ d	2.5	5.0	10	字	介米卯里
25	0. $06 \pm 0.02a$	0. $03 \pm 0.01a$	$0.08 \pm 0.03 a$	$0.16 \pm 0.05 a$	$0.09\pm 0.06a$
35	0.09 \pm 0.03 $_{\mathrm{c}}$	0. 04 \pm 0. 01c	0. $10 \pm 0.03c$	$0.35 \pm 0.05 \mathrm{b}$	$0.83 \pm 0.24a$
45	0.04 \pm 0.02c	0. 38 ± 0 . $04c$	0. $52\pm0.06c$	$1.74 \pm 0.35 \mathrm{b}$	$8.60 \pm 2.70 a$
55	0. 94 \pm 0. 30 c	1. 36 ± 0 . $31c$	0. $86 \pm 0.23c$	$3.88 \pm 0.41 \mathrm{b}$	14. 5 ± 2 . $60a$
65	0. 28 \pm 0. 05 c	0. 28 ± 0 . $09\mathrm{e}$	0. 40 \pm 0. 10c	$0.71\pm0.13b$	11. 2 ± 2 . $10a$

1) 播种后 30、40 d 各施用 1 次 Bt. 粉剂, 第 56 d 喷施 1 次爱比菌素(Abmectin); 同行具相同字母者在 0. 05 水平上差异不显著(DM RT)

表 4 和表 5 的结果表明, 套种田芥蓝的卵密度均显著低于芥蓝单种田. 特别是在芥蓝生长后期和晚苗收获期, 随着小菜蛾种群密度增长, 芥菜的引诱作用越来越明显, 单种田的小菜蛾卵密度都急剧上升, 高出套种田近 10 倍, 套种田的芥菜上卵密度是芥蓝的 16~40 倍. 说明芥菜可以用来作为一种引诱作物, 与甘蓝类蔬菜套种诱集防治小菜蛾对甘蓝类蔬菜的为害. 在 3 种套种方式之间, 芥蓝上卵密度差异不显著, 说明每隔 10 m 套种 1 行芥菜就能起到很好的诱集效果, 而这种套种间隔对芥蓝的产量几乎没有影响.

3 结论

不同蔬菜品种对小菜蛾的引诱力不同,利用引诱力强的品种与引诱力弱的品种进行套种,可以诱集防治小菜蛾对后者的为害.本研究发现,芥菜最能引诱小菜蛾雌虫前来产卵,而厚叶的甘蓝类蔬菜如芥蓝、椰菜、花椰菜、西蓝花等对小菜蛾产卵的引诱作用较弱,但如果大

面积连片种植,受小菜蛾为害也相当严重.利用芥菜作为一种引诱作物来诱集小菜蛾,再辅以农药杀死集中于芥菜的幼虫,是防治甘蓝类蔬菜上的小菜蛾的简单易行的方法.在大面积的蔬菜生产基地,这种方法有一定的推广价值. Srinivasan 等(1991)亦曾报道在印度应用芥菜与椰菜套种来防治小菜蛾对后者的为害,大大提高椰菜的上市率,减少杀虫剂的使用量,目前正在农场大面积推广应用.

参考文献

- 吴伟坚, 赵全良, 梁广文. 1992. 论蔬菜种植布局与小菜蛾发生为害的关系. 华南农业大学学报, 13 (4): 108~112
- Gupta P D, Thorsteinson A J. 1960a. Food plant relationships of the diamondback moth *Plutella mac-ulipennis* (Curt.) I. Gustation and olifaction in relation to botanical specificity of larvae. Ent Exp Appl. 3: 241~245
- Gupta P D, Thorsteinson A J. 1960b. Food plant relationships of the diamondback moth *Plutella mac-ulipennis* (Curt.) II. Sensory regulation of adult female. Ent Exp Appl. 3: 305~314
- Pivnick K A, Jarvis B J, Slater G P, et al. 1990. Attraction of the diamondback moth (Lepidoptera: Pluttelidae) to volatiles of oriental mustard: the influence of age sex, and prior to mates and host plants. Environment Entomology, 19(3):704~709
- Srinivasan K, Krishna P N. 1991. Indian mustard as a trap crop for management of major Lepidoptera pests on cabbage. Tropical Pest Management, 37(1): 26~32

PRELIM INARY STUDIES ON OVIPOSITION PREFERENCE TO HOST PLANTS OF DIAMONDBACK MOTH, Plutella xylostella AND ITS APPLICATION

Yu Guoquan Wu Weijian Gu Dejiu Zhang Weiqiu (Lab. of Insect Ecology, South China Agric. Univ., Guangzhou, 510642)

Abstract

In order to investigate the agricultral control methods of the diamondback moth (DBM), $Plutella\ xylostella\ (L.)$, oviposition preference of DBM to its host plants was studied. Among the six species of cruciferous vegetables, the female adult of DBM prefered to lay their eggs on the mustard ($Brassica\ juncea\ Coss.$) and flowering Chinese cabbage ($B.\ parachinensis\ Bailey$), and the number of eggs laid on radish ($Raphanus\ sativus\ L.$) and Chinese cabbage ($B.\ campestris\ L.$) was less, while the number of eggs laid on Chinese kale ($B.\ alboglabra\ Bailey$) and cauliflow er($B.\ aleracea\ L.\ var.\ botrytis\ DC$) was the least. Based on DBM preference to mustard, a trial measure that $B.\ juncea\ was\ used\ as\ a\ trap\ crop\ for\ management\ of\ DBM,\ was\ carried out\ in\ Shenzhen,\ Guangdong\ Province.\ Preliminary\ studies\ indicated\ that\ Chinese\ kale$ ($B.\ alboglabra$) cultivated at an interval of $5\sim 10$ meters followed by paired mustard rows could decrease the DBM population and reduce the application of insecticides.

Key words Plutella xylostella (L.); oviposition preference; agricultural control