四元数矩阵的中心化子

金玲玲

(华南农业大学理学院,广州,510642)

摘要 推广了数域上的矩阵中心化子理论。得到了实四元数体矩阵上的中心化子理论。

关键词 实四元数体;中心化子;若当标准型中图分类号 0 151,2

近十几年来,四元数体上的矩阵理论在我国获得了众多学者的关注,并得到一批较好的结果(谢邦杰,1982)。自然而然人们都想将现有的数域上矩阵理论推广到四元数体上,数域方阵的中心化子理论是一个完美的结论(李乔,1988),本文将此结论推广到四元数体上,给出了四元数体矩阵的中心化子的刻化。

设 R 是实数域, $H_R = R \oplus R_j \oplus R_j \oplus R_k$ 实四元数体, 其中 ij = -ji = k, $I^2 = J^2 = -1$, 复数域 $C = R \oplus R_i$, 为 H_R 的极大子域, H_R 表示 H_R 上 $n \times n$ 矩阵的集合. 设 $A \in H_R^{n \times n}$, A_c 表示 A 的复表示矩阵, 其定义及性质详见黄礼平(1994).

定义 设 $A \in H_R^{n \times n}$, 所有与 A 乘法可交换的 $H_R^{n \times n}$ 上方阵 X 的全体构成的集合称为 A 的中心化子, 记为 C(A)即 $C(A) = \{X \mid AX = XA, X \in H_R^{n \times n}\}$.

1 引理

以下设 $J_m(\lambda)$ 为对应于 λ 的m阶Jordan块

显然 $J_m(\lambda) = \lambda I_m + H_m$,其中 I_m 为 m 阶单位阵, H_m 形如

引理 1 设 $A \in H_R^{n \times n}$ 则 A 相似于唯一一个 Jordan 形矩阵 J, 即 $A \sim J = J_{n_1}(\lambda_1) \oplus J_{n_2}(\lambda_2) \oplus \dots \oplus J_{n_k}(\lambda_k)$, 其中: $\lambda_s = \alpha_s + b_s i \in \mathbb{C}$ $\alpha_s \in R$, $b_s \geqslant 0$, s = 1, \dots K 为 A_c 的特征值(通常意义下).

由黄礼平(1994)之定理 1 知,只须证明 λ 。为A。的特征值,由复表示矩阵的性质 见(黄礼平, 1994), 从 $A \sim J$ 可得到 $A_c \sim J_c = [J_{n_1}(\lambda_1)]_c \oplus \cdots \oplus J_{n_k}(\lambda_k)]_c = J_{n_1}(\lambda_1) \oplus J_{n_k}(\overline{\lambda_1})$ $\bigoplus ... \bigoplus J_{n_k}(\lambda_k) \bigoplus J_{n_k}(\overline{\lambda}_k)$

故, λ_1 , λ_1 ······ λ_k , λ_k 为 A_c 的所有可能的特征值, 从而定理得证.

引理 2 设 A, B, $D \in H_R^{n \times n}$ 下列等价: (i)四元数矩阵方程 AX - XB = D 有唯一解; (ii)复 数矩阵方程 $A_cX - XB_c = D_c$ 有唯一解; (iii) A_c , B_c 没有公共的特征值.

证明 (i), (ii)的等价性可仿 Huang (1998)中定理 6 的证明, 这里略去, (i), (iii) 的等价 性即为著名的 Roth 定理(黄礼平, 1994).

2 主要结论

设 $A \in H_R^{n \times n}$, J_A 为 A 的若当标准型, 即有可逆矩阵 S 使得,

 $S^{-1}AS = J_A = (\lambda_1 I_{P_1} + H_{P_1}) \oplus \dots (\lambda_\mu I_{P_\mu} + H_{pu})$ 其中 $p_1 + p_2 \dots p_u = n$, λ_i 为 A_c 的虚数 部大干零的特征值(引理1).

取 $X \in C(A)$, 则 $AX = XA < => SJ_AS^{-1}X = XSJ_AS^{-1} < => J_A(S^{-1}XS) = (S^{-1}XS)$ J_A ,

记 $Y = S^{-1} XS$,因此只须讨论方程 $J_A Y = Y J_A$.

将矩阵 Y 按 J_A 的分法分块:

$$Y = \begin{bmatrix} Y_{11} & \dots & Y_{1u} \\ & \ddots & & \\ Y_{u-11} & \dots & Y_{u-1u} \\ Y_{u1} & \dots & Y_{uu} \end{bmatrix},$$

其中 Y_{ij} 是 $P_i \times P_j$ 矩阵, i, j = 1, 2, ..., u, 则方程 $J_A Y = Y J_A$ 等价于 u^2 个方程 $(\lambda_i I_{P_i} + I_{P_i}) Y_{ij}$ = $Y_{ij}(\lambda_j I_{p_i} + H_{p_i}), i, j = 1, 2, \ldots, u$.

当 $\lambda_i \neq \lambda_j$ 时, $(\lambda_i I_{p_i} + I_{p_i})_c$ 与 $(\lambda_j I_{p_i} + I_{p_i})_c$ 的特征值分别为 λ_i , λ_i 与 λ_j , $\overline{\lambda_j}$ 由于 λ_i , λ_j 的虚 数部均大于零,这样, $\lambda_i \neq \overline{\lambda_j}$, $\overline{\lambda_i} \neq \lambda_j$,故 $(\lambda_i I_{p_i} + H_{p_i})_c$ 与 $(\lambda_j I_{p_i} + H_{p_i})_c$ 的特征值不同,这样由 引理 2 即知 $Y_{ij} = 0$.

当 $\lambda_i = \lambda_i$ 时,方程成为 $H_{p_i}Y_{ij}=Y_{ij}H_{p_i}$.

记 $Y_{ij} = (Y_{kl})_{p_i \times p_i}$ 则:

$$H_{p_{i}}Y_{ij} = \begin{bmatrix} y_{21} & \dots & y_{2p_{j}} \\ \vdots & \ddots & \vdots \\ y_{p_{i}1} & \dots & y_{p_{i}p_{j}} \\ 0 & \dots & 0 \end{bmatrix}; \qquad Y_{i_{j}}H_{p_{j}} = \begin{bmatrix} 0 & y_{11} & \dots & y_{1p_{j}-1} \\ 0 & y_{21} & \dots & y_{2p_{j}-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & y_{p_{i}1} & \dots & y_{p_{i}p_{j}} \end{bmatrix};$$

这 2 个 $p_i \times p_i$ 矩阵相等当且仅当 Y_{ii} 有下列形状.

其中 $\min\{p_i,p_j\}$ 个参数 $y_0,y_1\cdots$,可任取。由此可知 $J_AY-YJ_A=0$ 的右线性无关解的个数等于 $\sum\min\{p_i,p_j\}$,这里 \sum 是对所有满足 $\lambda_i=\lambda_j(1\leqslant i,j\leqslant \mu)$ 的整数对 (i,j)求和。以上结论可表达为如下定理。

定理 设 $\mathbf{H}_{\mathbf{R}}$ 为实四元数体, $A \in \mathbf{H}_{\mathbf{R}}^{\times \mathbf{n}}$,A 的 Jordan 型矩阵为 $\mathbf{J}_{A} = \mathbf{J}_{p_{i}}(\lambda_{1}) \oplus \cdots \mathbf{J}_{p_{u}}(\lambda_{u})$,则 A 的中心化子 $\mathbf{C}(A) = \{ \mathbf{X} \in \mathbf{H}_{\mathbf{R}}^{\times \mathbf{n}} | \mathbf{X} A = A \mathbf{X} \}$ 是 $\mathbf{H}_{\mathbf{R}} \perp \sum_{\min \{ p_{i}, p_{j} \}}$ 维右线性空间. 其中 \sum 是对所有满足 $\lambda_{i} = \lambda_{i}$ (1 \leq i, $j \leq \mu$)的整数对(i, j)求和.

推论 1 dim $\mathbf{C}(A) \geqslant n$.

证明 dim
$$\mathbf{C}(\mathbf{A}) = \sum_{i,j=1}^{u} \min\{p_i, p_j\} \geqslant \sum_{i=1}^{u} \min\{p_i, p_j\} = \sum_{i=1}^{u} p_i = p_1 + p_2 \dots + p_u = n.$$

推论 2 dim $\mathbf{C}(\mathbf{A}) = n$ 的充分必要条件是 $\lambda_1, \lambda_2 \cdots \lambda_u$ 互不相同.

证明 在推论 1 的证明中,等号成立 $<=>i\neq j$ 时, $\lambda_i=\lambda_i$ 即得证.

李 乔.1988 矩阵论八讲,上海,上海科学技术出版社,23~30

黄礼平. 1994. 四元数体上方阵的标准形与矩阵方程 AX+XB=D. 新疆大学学报(自然科学版),11 (1): 35~38

谢邦杰. 1982 抽象代数学. 上海: 上海科学技术出版社, 78~386

Huang Liping 1998. The Quaternion Matrix Equation $\sum A^i \times B^i = E$. Acta Mathematica Sinica (New Series), $14(1):91 \sim 98$

THE CENTRALIZER OF REAL QUATERNION MATRIX

Jin Lingling

(College of Science, South China Agric. Univ., Guangzhou, 510642)

Abstract

The author generalized the results of the centralizer of matrix over complex number field to Real Quaternion field.

Key words Real Quaternion field; centralizer of matrix; Jordan canonical form 1991 MR subject classification

[责任编辑 张 砺]