# 番茄大、小孢子的发生及雌、雄配子体的发育

陈国菊 程玉瑾 吴定华 吴筱颖 (华南农业大学园艺系,广州,510642)

摘要 研究了番茄大、小孢子的发生及雌、雄配子体的发育,结果表明:番茄(Lycopersion esculentum Mill.)花粉母细胞的胞质分裂为同时型.小孢子四分体呈正四面体型.番茄绒毡层细胞是同型的,均来自初生壁内层,为腺质绒毡层.小孢子继续发育成2-细胞花粉:营养细胞和生殖细胞.雌蕊为湿型柱头、实心花柱、倒生胚珠、单珠被.胚囊母细胞经减数分裂形成直线排列的四分孢子,珠孔端1个继续发育为功能大孢子,其余3个退化.胚囊发育为蓼形.

关键词 番茄;大孢子发生;小孢子发生;雄配子体;雌配子体;发育中图分类号 S 641.2;Q 944.4

番茄是世界上重要的蔬菜作物之一.有关番茄胚胎发育方面的研究已有一些报道(吴梅珍等,1991;邹道谦等,1990),而关于其大、小孢子的发生及雌、雄配子体发育的研究较少(张秀刚,1990;Cooper,1931).本文对番茄大、小孢子的发生及雌、雄配子体的形成这一生殖过程作了较详细的细胞学观察,以期从细胞学方面说明番茄授粉和受精作用,为番茄的杂交育种提供依据.

### 1 材料与方法

供试材料是醋栗番茄[L. pimpinellifolium (Jusl.) Mill.]和栽培番茄粤农 2 号(L. esculentum var. Yuenong No.2),于 1995、1996 年春(5月)秋(11月)两季共 4 次取样,取不同大小的花蕾分级,用卡诺氏液固定,艾氏亦木精整体染色,石蜡包埋,连续切片,片厚 8 ~ 10  $\mu$ m,光学显微镜观察、摄影.

## 2 结果与讨论

#### 2.1 花器的外部形态

番茄雄蕊是由 5~6个花药组成的花药筒,顶生花药,每个花药由 2 室构成,花药成熟后在药囊内侧中心线两侧纵裂,呈蝶形(图版 I-1). 雌蕊由柱头、花柱和子房构成,湿型柱头,实心花柱,子房上位,多心室(图版 I-2),倒生胚珠,单珠被.

#### 2.2 小孢子的发生及雄配子体的发育

花药壁层的发育和小孢子母细胞的形成:由雄蕊原基形成的幼小花药横切面(图版 I - 3),外面是一层表皮,内部是一群分裂活跃的细胞.表皮下4个角隅处的细胞分裂较快,1个或几个细胞核变大变圆,细胞也相应变大(图版 I - 4),分化出孢原细胞.孢原细胞进行平周分裂形成初生壁细胞和初生造孢细胞(图版 I - 5).初生壁细胞继续进行平周和垂周分裂,外层

1998-06-01 收稿 陈国菊,女,31 岁,讲师,硕士

发育成药室内壁,内层分化出中层组织和绒毡层.药室内壁、中层、绒毡层连同表皮构成花药壁.番茄花药表皮细胞进行垂周分裂,长形,常有明显的角质层,行使保护的功能.位于表皮以内的一层细胞称药室内壁(图版 I - 6, en),细胞呈扁平形,在小孢子母细胞进行减数分裂的过程中逐渐解体和被吸收.药室内壁以内的几层扁平细胞为中层细胞,多为 3 层(图版 I - 6, ml),在小孢子母细胞进行减数分裂的过程中逐渐解体和被吸收(图版 I - 8,10),最后消失(图版 I - 11).中层以内次生造孢细胞以外一层较大的细胞为绒毡层,细胞质浓厚,液泡小而少,初期绒毡层是单核的(图版 I - 6,t),但后来常常变成双核或多核(图版 I - 7),这是由于细胞的有丝分裂不形成细胞板.番茄绒毡层是同型的,均来自初生壁内层,在小孢子母细胞进行减数分裂时,绒毡层出现自溶的迹象(图版 I - 8),在小孢子发育过程中继续自我解体、到 2 - 核花粉时期仅剩残迹或不存在(图 I - 15),但绒毡层在整个发育过程中始终维持在原来的位置,为腺质绒毡层,无周原质团的产生.这一点与张秀刚(1990)的研究结果"番茄绒毡层为变形绒毡层"不一致.

初生造孢细胞经过 1 次平周分裂形成 2 排次生造孢细胞(图版 I = 6, ss), 质浓、核大, 次生造孢细胞直接行使小孢子母细胞的功能.

小孢子的形成:番茄小孢子母细胞减数分裂过程所发生胞质分裂为同时型,染色体的行为与一般典型情况是一致的(胡适宜,1984).第 1 次减数分裂的前期很长(图版 I=9),经中期、后期、末期后形成一双核细胞(图版 I=10),不形成分隔壁,第 2 次减数分裂中,2 个核同时进行分裂形成四核细胞(图版 I=11),分裂完成时在 4 个核间产生细胞壁,并分隔成由胼胝质壁包围的 4 个细胞,形成正四面体形的小孢子四分体(图版 I=12).最后由于胼胝质壁的溶解,4 个小孢子彼此分开,释放到充满绒毡层分泌物的药室中形成小孢子(图版 I=13).同一花药不同药室内,花粉母细胞减数分裂是高度同步的.

雄配子体的发育:番茄雄配子体的发育分 2 个步骤.番茄小孢子在花药内经一次有丝分裂形成二核花粉;成熟的二核花粉在柱头上萌发后,花粉管中生殖细胞在花柱中再分裂成 2 个雄配子(精子).当小孢子从四分体释放后,进一步形成明显的壁,同时体积迅速增大.随着体积的增大,小孢子的细胞质发生液泡化,逐渐形成一个中央大液泡,细胞质成一薄层贴着细胞壁,核随着从中央移至细胞的一侧(图版 I-14),经第 1 次有丝分裂成二核花粉:生殖核贴近花粉壁,营养核向着大液泡,接着发生胞质分裂,两核间出现一个弧形的细胞板,成为二细胞花粉——生殖细胞和营养细胞(图版 I-15). 花粉细胞质内逐渐积累了大量淀粉粒,外壁增厚,4 个萌发孔等距而均匀地分布在外围——成熟花粉粒(图版 I-16).

#### 2.3 大孢子的发生及雌配子体的发育

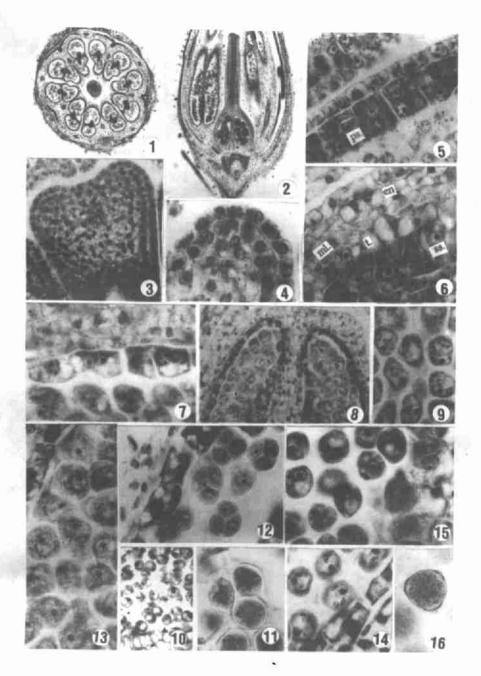
大孢子的发育过程:番茄子房壁内表皮下的细胞局部平周分裂成胚珠原基.原基的前端为珠心,基部为珠柄(图版 II - 1).珠心表皮下有一个细胞体积增大,细胞质浓厚,核较显著,是为孢原细胞(图版 II - 2). 孢原细胞进行分裂产生 2 个新细胞:外侧是周喙细胞,内侧是造孢细胞(图版 II - 3),周喙细胞继续分裂发育成绒毡层细胞和其它珠心组织,造孢细胞进一步增大不经分裂直接发育成大孢子母细胞即胚囊母细胞(图版 II - 4). 此时珠被也开始发育,随着大孢子母细胞减数分裂的进行,珠被从基部向顶端生长,大孢子形型时,珠被也接近胚珠的顶端(图版 II - 9). 番茄珠被为单珠被.在胚珠顶端珠被不愈合,形成珠孔.大孢子母细胞经过两次减数分裂形成 4 个大孢子.减数分裂过程及染色体形态与花粉母细胞的减数分裂过程

相同.第1次减数分裂形成二分大孢子(图版  $II = 5 \times 6$ ),第2次分裂形成大孢子四分体呈直线排列,其中,珠孔端的大孢子起作用,体积增大并逐渐移至胚囊中央,其余3个退化(图版  $II = 7 \times 8$ ),形成大孢子(图版 II = 9).

雌配子体的发育:番茄大孢子经连续3次有丝分裂形成成熟胚囊即雌配子体,属蓼形.

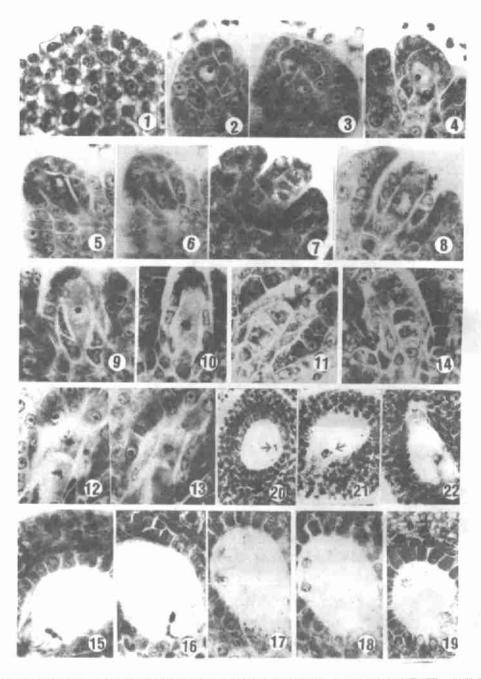
大孢子发育为胚囊的过程中,首先是大孢子细胞体积增大,同时出现液泡,第一次分裂(图版 II = 10)后形成 2 个核(图版 II = 11),再一次分裂(图版 II = 12、13)成 4 个核(图版 II = 14),这 4 核又各分裂一次,共 8 个核处于同一细胞质中(图版 II,15 = 19).随着核分裂的进行,胚囊显著扩大,尤其是长轴方向上,接着在核之间形成细胞壁,构成由 7 细胞 8 核组成的成熟胚囊:两端各有一核移至中央组成含 2 个核的中央细胞(图版 II = 20),卵器位于珠孔端(一个卵细胞和两个助细胞)(图版 II = 21)、合点端有 3 个反足细胞(图版 II = 22).

#### 参考文献


吴梅珍,吴定华. 1991. 栽培番茄与野生秘鲁番茄杂交胚胎学研究. 华南农业大学学报,12(4):29~36 邹道谦,申书兴. 1990. 四倍体番茄低稔性胚胎学研究. 华北农学报,5(1):10~16 张秀刚.1990. 番茄小孢子发生及其雄配子体发育的细胞学观察. 北京农学院学报,5(1):7~15 胡适宜. 1984. 被子植物胚胎学. 第 2 版. 北京: 高等教育出版社,20~102 Cooper D C. 1931. Microsporogenesis and development of the male gametophyte of *L. esculentum*. Amer J Bot, 18: 737~748

# Microsporogenesis, Megasporogenesis and Male, Female Gametophyte Development in Tomato (*Lycopersion esculentum*)

Chen Guoju Chen Yujin Wu Dinghua Wu Xiaoying (Dept. of Horticulture, South China Agric. Univ., Guangzhou, 510642)


Abstract Microsporogenesis, megasporogenesis and development of male, female gametophyte in tomato (L. esculentum) were studied. The result showed that the cytokinesis of the pollen mother cell in meiosis was of the simultaneous type. The arrangement of microspores in the tetrads was regular tetrahedroid. The tapetum cell in tomato was the same type and was derived from the primary parietal cell, the modle of tapetum was glandular tapetum. The microspore was divided into two-cell pollen (male gametophyte): one vegetative cell and one generative cell. The stigma was wet type, the style was solid, anatropous ovule, single integument. The tetrads from the meiosis of megaspore mother cell lined straightly, but only the tap one near micropyle could developed into the megaspore and other three cell degenerated. The development of the embryo sac (female gametophyte) conformed with the polygonum type.

**Key words** tomato; microsporogenesis; megasporogenesis; male gametophyte; female gametophyte; development



1. 花蕾模切面(×26.4); 2. 花蕾纵切面(×26.4); 3. 幼小花药模切面(×264); 4. 幼小花药四角隅之一; 5. 初生造抱(pe.)时期; 6. 次生造孢细胞(ss.)时期; en 为药室内壁, ml 为中层细胞, t 为绒毡层; 7. 双层、三核绒毡层细胞; 8. 花粉母细胞(×264); 9. 前期 I; 10. 二核细胞(×264); 11. 四核细胞; 12. 小孢子四分体; 13. 小孢子; 14. 小孢子第一次有丝分裂前期; 15. 2 - 细胞花粉时期; 16. 成熟花粉时期

图版 I 花器构造、小孢子的发生及蜂配子体的发育(除注明外倍率均为 660 倍)



1.胚珠原基; 2. 抱原细胞; 3. 周喙细胞和造胞细胞; 4. 胚囊母细胞(EM); 5,6. 二分大孢子(同一切片不同光切面); 7,8. 正在退化的四分大孢子(同一胚囊连续切片); 9. 大孢子; 10. 第一次有丝分裂中期; 11. 二核大孢子; 12.13. 第二次有丝分裂中期(同一切片不同光切面); 14. 四核大孢子; 15~19. 八核大孢子(同一胚囊连续切片); 20~22. 成熟胚囊,依次为;中央细胞、卵器、反足细胞(×264)

图版 [ 大孢子的发生及雌配子体的发育

【责任编辑 柴 烙】