籼型光温敏核不育水稻不育性的遗传研究

廖亦龙1 万邦惠2

(1 广东省农业科学院水稻研究所,广州,510640;2 华南农业大学农学系)

摘要 研究了 4 个光温敏核不育水稻的育性在不同遗传背景影响下的遗传表达.结果表明 W6154S、W7415S、N12S 和 N18S 的育性均由 2 对核隐性基因控制,但因遗传背景的不同,育性的遗传表达机制极为复杂.通过对 F_2 、 F_3 群体育性的进一步分析,提出了"育性恢复基因的不完全显性及剂量效应"假说.同时,就分离群体育性分离模式的多态性进行了讨论.

关键词 籼稻;光温敏雄性不育性;遗传中图分类号 S 511.210.2

关于光温敏核不育水稻(photo-thermo sensitive genic male sterile rice,以下简称 PTGMs)不育性的遗传基础和规律研究报道较多,一致认为 PTGMs 不育性受核内隐性基因控制,不表现细胞质效应,属孢子体不育类型,常规品种携有相应的显性恢复基因.但在育性遗传模式方面研究结果不尽一致.综合有关方面的研究,可将 PTGMs 不育性遗传规律概括为以下 5 种模式:(1)单基因遗传模式(石明松,1986;朱英国等,1987);(2)双基因遗传模式(靳德明等,1991;1993;胡学应等,1992);(3)三基因遗传模式(Zhang,1992);(4)质量数量性状遗传模式,认为光敏雄性不育是光敏不育基因和育性差异基因协同作用的结果,当育性差异基因为一对或少数对时表现为质量性状的遗传特点,当涉及到较多对时表现数量性状的遗传特点(梅国志等,1990).微效修饰基因的分离、重组是造成 PTGMs 分离群体育性出现连续分布的主要原因(薛光行等,1991);(5)非典型性遗传模式,强调 PTGMs 与常规品种的分离群体育性分离模式的多态性(张晓国等,1991;李丁明等,1989).而且认为,分离模式的多态性是由于遗传背景与PTGMs 间的遗传距离的大小造成(薛光行等,1995).

本研究将光温敏核不育基因置于不同的遗传背景之下,通过对其分离世代的育性进行详细分析,提出了"育性恢复基因的不完全显性及剂量效应"假说,较好地解释了分离群体育性出现连续分布的现象,以及育性分离模式的多态性等问题.

1 材料与方法

1.1 试验材料

选用 W6154S、W7415S、N12S、N18S 等农垦 58S 衍生不育系分别与特青、湘早籼 1 号、Vary Lava 1312(V1312)3 个常规品种进行不完全双列杂交(4×3),并于 1994、1995 年长日高温条件下种植其 F_1 、 F_2 及 F_3 代,观察其育性变化.同时配置所有杂交组合的 BC_1 代,并于 1994 年秋季高温条件下观察其育性表现.

1998-08-31 收稿 廖亦龙,男,29 岁,助理研究员,硕士

^{*} 国家科委"863"计划(863-101-01)资助项目

1.2 试验方法

育性调查以花粉可染率为主要育性指标,并结合单株目测和套袋自交结实率进行,花粉育性调查时,取 $5\sim6$ 朵成熟颖花用 FAA 液固定.镜检时混合压片,用 w 为 1% I_2 -KI 染色, 10×10 倍显微镜下观察 3 个视野.单株目测以株型、包颈程度、花药形态等为观察指标区分育性类型.

结实率调查. 凡子房膨大伸长并有淀粉粒累积的都计为实粒. 用经连续性矫正的 χ^2 值进行遗传适合性测验.

2 结果与分析

2.1 不育系与常规品种杂交 F₁ 代育性表现

各不育系与 3 个常规品种杂交, F_1 育性列于表 1, 由表 1 分析可得, 1) 在广州长日高温条件下,各组合 F_1 花粉育性均在 79.33%以上,表明各籼型不育系的育性可以被不同类型常规品种恢复,供试的籼稻品种具有相应的显性主效恢复基因,其不育受核内隐性主基因控制; 2) 不同类型的常规品种对同一不育系的恢复度不一致,如特青对 W6154S 的恢复度只有 80.18%,而 V1312 对它的恢复度达到 91.08%. 其次,同一恢复亲本对不同不育系的恢复能力也有较大差异.认为遗传背景的差异是造成这种现象的主要原因.

An A	抽穗期		花粉可染率/%	
组合	(日/月)	穗数	$\bar{x} \pm S$	C. V/%
W6154S/特青	22/8	4	80.18 ± 2.60	9.484
W6154S/湘早籼 1 号	20/8	16	90.98 ± 4.62	5.081
W6154S/V1312	18/8	18	91.80 ± 3.90	4.243
W7415S/特青	1/9	4	89.81 ± 7.27	8.125
W7415S/湘早籼1号	28/8	6	79.33 ± 6.40	8.060
W7415S/V1312	29/8	6	87.08 ± 5.24	6.020
N12S/特青	27/8	11	81.88 ± 6.84	8.348
N12S/湘早籼 1 号	26/8	4	86.07 ± 5.08	5.907
N18S/特青	30/8	5	90.30 ± 5.87	6.501
N18S/湘早籼 1 号	29/8	8	88.18 ± 2.95	3.343
N18S/V1312	28/8	8	89.09 ± 2.80	3.144

表 1 各不育系与恢复品种杂交 F, 代育性表现(广州、1994)

2.2 F₂ 代及 BC₁ 代育性分离模式

农垦 58S 衍生籼型不育系与不同类型常规品种杂交 F_2 代和 BC_1 代育性结果列于表 2,表中显示:1)W6154S 与 3 个常规恢复品种杂交,W7415S 与特青杂交 F_2 育性符合 1:15, BC_1 代符合 1:3 的分离比例,遗传适合性检验符合两对基因的假设,表现为两对基因的遗传模式 .2)W7415S/湘早籼 1 号,N18S/湘早籼 1 号,N18S/V1312 F_2 代育性分离呈 3:13 的遗传模式,表现为两对基因的"抑制"作用,W7415S/V1312 F_2 代不育与可育之比为 1:7.180 3,不符合任何形式的遗传比例,具有非典型性.而 BC_1 代育性分离涉及两对基因的遗传.综合上述情况认为

W7415S 涉及核内两对隐性基因的遗传,但其遗传机制极为复杂,因遗传背景不同而变化极大.表现出遗传模式的多态性.3) N12S 与特青,湘早籼1号,N18S/特青配组的 F_2 代,BC1代的育性分离均表现为一对基因的遗传模式,但田间观察显示,其育性呈连续分布,半不育株较多,而与安农S-1,衡农-1S 等单基因不育系配组的 F_2 代育性分离状况不同(廖亦龙等,1998).

组合与世代	不育株	可育株	实际比例	期望比例	χ²	P/%
W6154S/特青 F ₂	31	501	1:16.161	1:15	0.098 2	75 ~ 90
W6154S//W6154S/特青	5	23	1:4.600	1:3	0.428 6	50 ~ 75
W6154S/湘早籼1号 F ₂	15	322	1:21.467	1:15	1.567 0	10 ~ 25
W6154S//W6154S/湘早籼1号	10	37	1:3.700	1:3	0.177 3	50 ~ 75
W6154S/V1312 F ₂	22	319	1:14.500	1:15	0.001 8	> 90
W6154S//W6154S/V1312	16	40	1:2.500	1:3	0.2143	50 ~ 75
W7415S/特青 F ₂	43	508	1:11.814	1:15	2.013 4	10 ~ 25
W7415S// W7415S/特青	16	30	1:1.875	1:3	0.1984	50 ~ 75
W7415S/湘早籼1号 F ₂	78	402	1:5.154	3:13	1.808 5	10 ~ 25
W7415S//W7415S/湘早籼1号	13	25	1:1.923	1:3	0.0098	> 90
W7415S/V1312 F ₂ .	61	438	1:7.181			
W7415S// W7415S/V1312	16	36	1:2.250	1:3	0.641 0	25 ~ 50
N12S/特青 F ₂	125	409	1:3.270	1:3	0.639 2	25 ~ 50
N12S//N12S/特青	28	38	1:1.357	1:1	1.227 3	25 ~ 50
N12S/湘早籼 1 号 F ₂	144	412	1:2.861	1:3	0.194 2	50 ~ 75
N12S//N12S/湘早籼 1 号	9	15	1:1.667	1:1	1.041 7	25 ~ 50
N18S/特青 F ₂	126	349	1:2.770	1:3	0.511 5	25 ~ 50
N18S//N18S/特青	25	34	1:1.360	1:1	1.084 7	25 ~ 50
N18S/湘早籼 1 号 F ₂	76	365	1:4.803	3:13	0.5699	25 ~ 50
N18S/V1312 F ₂	81	277	1:3,420	3:13	3.2800	5 ~ 10
N18S//N18S/V1312	15	31	1:2.067	1:3	1.043 5	25 ~ 50

表 2 各不育系与常规品种杂交 F₂、BC₁ 代育性表现¹⁾(广州, 1995)

2.3 F₃代育性分离表现及分析

从各不育系与特青杂交后的 F_2 群体中随机选择 30 个单株(不育株不人选),每单株选主穗种成一个 F_3 小区(株系),以确保各小区植株具有相同的基因型.考查各组合 30 个 F_3 株系的育性分离状况,并统计育性按 1:3, 1:15 及不发生分离的株系数,以及各组合整个 F_3 群体中不育株与可育株的数目列于表 3. 表 3 显示,W6154S/特青 F_3 代稍微偏离两对基因独立遗传群体的育性分离模式(以上各分离类型株系数分别为 8,8,14 个),而且从整个 F_3 大群体中总不育株与总可育株之比不符合 1:11 的遗传比例($\chi^2=22.73^{**}$),表现为不育株明显偏少.而从其 F_2 群体中不育与可育之比符合 1:15 的比例,没有出现不育偏多的现象.出现这种现象的主要原因与 W6154S 的育性起点温度较高有关,一旦高温条件不能满足,则不育性不能彻底表达;W7415S/特青 F_3 代的 30 个株系符合 8:8:14 的比例,且整个 F_3 群体中不育与可育之比符合

¹⁾ 调查日期: BC_1 代为 1995 年 7 月 10 日, F_2 代为 1995 年 7 月 10~21 日; 2) $\chi^2(0.05,1)=3.84$

1:11 的遗传比例(χ^2 = 0.524 4),表明其育性受核内两对相互独立的隐性基因控制;N12S/特青,N18S/特青 F_3 的 30 个株系中,出现 1:3, 1:15,及不发生分离的小区数均不符合 8:8:14 的比例,且整个 F_3 群体不育与可育之比亦不符合 1:11 的遗传比例,表现为不育株极少,不发生分离的株系数较多

不育系 一	按不同比例分离小区数			77 TH #F	7 * #	교소바	2/4 44
	1:3	1:15	0: œ	总株数	不育株,	可育株	$\chi^2(1:11)$
W6154S	4	10	16	1 613	81	1 532	22.73**
W7415S	9	8	13	2 022	178	1 844	0.524 4
N12S	3	7	20	1 580	47	1 533	58.69**
N18S	3	9	18	1 615	68	1 547	33.39*

表 3 W6154S、W7415S、N12S 和 N18S 与特青杂交 F3 代育性分离模式(广州, 1995)

进一步分析表明、N12S/特青、N18S/特青 F_3 群体中不育株明显偏少,不发生育性分离的株系数显著增多的原因是由于 F_2 群体中具单式基因型 S_{SSS} 的个体在长日高温条件下表现为不育或育性极低而没有入选的缘故,也正是杂种后代不育系依然还能分离出可育株的原因(张廷壁、1988). 此类个体占整个群体的 $5/16(2/16S_1s_1s_2s_2+2/16s_1s_1S_2s_2+1/16s_1s_1s_2s_2)$. 这样, F_2 代群体中入选小穗的基因型为 $S_1S_1S_2S_2(1/11)$, $S_1S_1S_2S_2(2/11)$, $S_1s_1S_2S_2(2/11)$, $S_1s_1S_2S_2(1/11)$, $S_1s_1S_2S_2(1/11)$,前 $S_1S_1S_2S_2(1/11)$,前 $S_1S_1S_2S_2(1/11)$,前 $S_1S_1S_2S_2(1/11)$,前 $S_1S_1S_2S_2(1/11)$,前 $S_1S_1S_2S_2(1/11)$,前 $S_1S_1S_2S_2(1/11)$,有性有性不发生分离,表现为可育(包括半不育). 这类个体占 S_1 群体的 $S_1S_1S_2S_2(1/11)$,以为 $S_1S_1S_2S_2(1/11)$,以为 $S_1S_1S_2S_2(1/11)$,有力 $S_1S_1S_2S_2(1/11)$,有力 S

3 讨论

3.1 基因的不完全显性及剂量效应

现代遗传学认为,如果等位基因中要有控制该性状发育的 2 个(或多个)显性基因同时存在时才能发挥完全作用,否则,只能发挥部分作用(表现为中间性状),这就是不完全显性.而且还认为,基因对于代谢过程的调控即对于性状发育的调控,不仅有定性作用,而且还有定量作用,当某一杂合基因型中,某种基因在数量或活力上占优势,合成的基因产物大大超过另一种基因产物,从而就能控制性状的发育,表现出相应的表现型效应.即存在基因剂量效应(周希澄,1990; Francisco et al,1984).

本试验通过对 F_2 及 F_3 代的育性分离研究表明,当常规品种中的恢复基因表现不完全显性时, F_2 群体育性呈连续分布,出现许多育性不同的半不育株,且具有 S_{SSS} 单式基因型个体表现为不育或育性极低而没有人选,使得 F_3 群体中不发生育性分离的小区数明显增多,而按 1:3 分离的小区数显著减少。因此认为光温敏雄性不育的遗传存在基因的不完全显性及剂量效应。具体表述下:1)当遗传背景中只有一个恢复基因(S_1)存在不完全显性时,那么 F_2 群体就会符合 $3(2S_1s_1s_2s_2+1s_1s_1s_2s_2):13$ 的遗传比例。如 W7415S/湘早籼 1 号 F_2 , N18S/V1312 F_2 .2)当遗传背景中 2 个恢复基因均不完全显性时,群体中不育与可育之比就会接近 $5(2S_1s_1s_2s_2+2s_1s_1S_2s_2+1s_1s_1s_2s_2):11$,符合 1:3 的遗传比例。如 N12S/特青 F_2 ,N12S/湘早籼 1 号 F_2 ,N18S/特青 F_2 ,N12S/湘早籼 1 号 F_2 ,N18S/特青 F_2 ,N12S/湘早

在差异(假定就恢复能力而言 $S_1 > S_2$),那么 S_1 , S_2 具有累加效应, F_2 群体中就会出现很多育性类型不同的个体,按照可育程度可以排列如下 : $s_1s_1s_2s_2 < s_1s_1S_2s_2 < s_1$

3.2 光温敏雄性不育遗传模式的多态性

光温敏雄性不育遗传模式的多态性在前人的研究中广泛报道过, Sheng(1992)通过对农垦 58S 不育性遗传学研究,提出"重复基因位点平行突变"假说,并且认为基因间的互作是导致 F_2 群体育性分离模式多态性的原因.事实上,育性的划分标准带有很大的人为因素.研究表明, F_2 群体育性多数呈连续分布,如果群体中不育与可育之比为 1:3 或相差不大,那么总能找到一个育性阀值把半不育,完全可育划开,使得不育:半不育:全可育符合 4:3:9 的遗传比例,表现为"隐性上位"作用.其实 s_1, s_2 属于同效基因,不是分别控制两个性状,不具一一对应关系,只有重叠作用和累加作用,不能简单地用经典遗传学的基因互作效应来解释其分离现象(孙宗修等,1993). 同样我们也不能把 3:13 的育性分离现象说成是 s_1 对 s_2 的抑制作用. 薛光行等(1991)及梅国志等(1990)把 F_2 群体育性连续分布现象归结为微效修饰基因、微效育性差异基因的影响. 仍然不能很好地解释遗传模式多态性问题. 而且修饰基因的作用应该造成 F_2 群体育性呈单峰分布,使得亲本育性类型个体较少,而中间型(半不育)个体明显增多(Francisco et al,1984).

本研究认为遗传模式的多态性主要由于恢复基因的不完全显性,使得 S_1 、 S_2 具有累加作用,表现出基因的剂量效应,单式基因型(Ssss)个体表现不育,或育性极低.同时,由于表型是基因之间、基因与环境之间相互作用的结果,因此 F_2 群体育性表现连续分布,育性分离模式具有多态性.另外,同源染色体的交换重组(Hollidy 理论)以及连锁遗传也是造成遗传模式多态性的原因.

参考 文献

石明松,邓景扬.1986. 湖北光敏核不育水稻的发现、鉴定及其利用途径. 遗传学报,13(2):107~112 朱英国,余金洪.1987. 湖北光敏核不育水稻育性稳定性及其遗传行为研究. 武汉大学学报(HPCMR 专刊).61~67

薛光行,邓景扬.1991.对光周期敏感雄性核不育水稻的初步研究——修饰基因对光敏雄性不育后代表现型的影响.遗传学报,18(1):59~66

梅国志,汪向明,王明全.1990.农垦 58S 型光周期敏感雄性核不育的遗传分析.华中农业大学学报,9(4): 400~406

张晓国,朱英国.1991. 湖北光敏不育水稻不育性的遗传规律.遗传,13(3):1~3

靳德明,李泽炳.1991.晚粳光敏核不育系与常规晚粳品种杂交 $F_1 \setminus F_2$ 和 BC_1 育性的遗传行为. 华中农业大学学报,10(2):136~144

靳德明,李泽炳.1993. 粳型光敏核不育系与常规粳稻品种杂交后代的遗传分析. 华中农业大学学报,12 (3):121~124

胡学应,万邦惠.1992.水稻光(温)敏核不育基因的遗传分析.见:袁隆平主编.两系法杂交水稻研究论文集.北京:农业出版社,12(3):201~204

李丁明,梁世荣, 绮林.1989. 湖北光敏核不育水稻在华南的利用研究.杂交水稻,(1):27~31

孙宗修,程式华,斯华敏.1993. 光敏核不育水稻遗传研究方法的思考.遗传,15(6):35~37

薛光行,邓景扬,赵建宗.1995.水稻光周期敏感雄性不育性的遗传研究—— F_2 分离群体育性分布的多态性.中国农业科学,28(1):33~41

周希澄,郭平仲,冀耀如.1990.遗传学.北京:高等教育出版社,52~293

廖亦龙,万邦惠.1998.四种温敏核不育水稻不育性的遗传分析.福建稻麦科技,16(3):1~4

张廷壁.1998. 湖北光敏核不育水稻的遗传研究.中国水稻科学,2(3):123~128

Sheng Xiaobang. 1992. Genetics of photoperiod sensitive genic male sterility of Nongken 58S(Oryza sativa). Chinese J Rice Sci, 6(4):5 ~ 14

Francisco J, Ayala J A, Kiger Jr. 1984. Modern genetics. New York: The Benjamin/Cumming Publishing Company Inc, 545 ~ 633

Zhang Q F, Shen B Z. 1994. An RFLP-based genetic analysis of photoperiod sensitive male sterility in rice. Rice Genet (Newsletter), 10(3):24 ~ 25

The Inheritance of Photo-Thermo Sensitive Genic Male Sterility in Indica Rice (Oryza sativa L. subsp. indica)

Liao Yilong¹ Wan Banghui²
(1 Institute of Rice Research, Guangdong Academy of Agric. Sci., Guangzhou, 510640;
2 Dept. of Agronomy, South China Agric. Univ.)

Abstract The fertility inheritance and expression under the influence of different genetic background of four Photo-Thermo Sensitive Genic Male Sterile Rice were studied . The results indicated that the fertility of W6154S, W7415S, N12S and N18S was controlled by two pair of nuclear recessive genes , but their expression and genetic mechanism were very complicated due to the great influence of various genetic background . By thoroughly analyzing the fertility segregation of F_2 , F_3 population , the hypothesis, "incomplete dominance and dosage effect of restorer genes", was put forward and the polymorphism of fertility segregation was also discussed in this paper.

Key words Indica Rice (*Oryza sativa* L. subsp. *indica*); Photo-Thermo Sensitive Genic Male Sterility; inheritance

【责任编辑 张 砺】