大蒜愈伤组织诱导条件的优化*

李志勇1 罗焕亮2 郭 勇1

(1 华南理工大学食品与生物工程学院,广州,510641;2 广州市林业科学研究所)

摘要 对大蒜愈伤组织诱导条件进行了优化,结果表明:采用带表皮,外植体大小为 0.5 cm×0.3 cm×0.2 cm 的广州白皮大蒜蒜瓣,在 MS+3.0 mg/L 2,4-D+2.2 mg/L IBA 培养基中可促使大蒜愈伤组织大量发生.广州白皮大蒜与大头蒜品种对愈伤组织诱导无显著差异.大蒜外植体 4 ℃低温保藏 18 d 可降低出愈污染,但对愈伤组织诱导影响不大.

关键词 大蒜;愈伤组织;培养基;外植体;低温处理中图分类号 Q945.51

大蒜,又名胡蒜,是百合科葱属植物蒜(Allium sativaum L.)的鳞茎,是香辛类蔬菜之一,在我国南北广泛栽培.该植物不仅可作为蔬菜鲜食或加工,还可作为香辛调料,并且具有很高的药用价值.在植物界中,大蒜是含超氧化物歧化酶(SOD)量最高的植物之一,完全可作为 SOD 的天然植物来源(张毅,1993). 现已明确知道,SOD 在抗辐射损伤、抗炎症、预防衰老和治疗癌症肿瘤等方面具有积极作用(翁清清等,1988). 有关大蒜愈伤组织的诱导,研究报道有鳞茎微繁技术(刘高琼等,1996),茎尖脱毒技术(李昌华等,1995),体细胞胚发生(Schavemaker, 1995)、离体苗繁殖和植株再生(Mohamed-Yasseen et al, 1995; Koch et al, 1995),也有使用根段进行诱导再生的(Myers, 1995). 但在运用大蒜细胞大量培养生产代谢药物超氧化物歧化酶方面,国内郭勇教授领导的试验小组进行了报道(张毅,1993;刘叔文,1996;王霜,1997),本试验在已初步探明诱导基本培养基的基础上,进行了大蒜愈伤组织诱导条件优化的补充研究,以期为进一步的试验打下基础.

1 材料与方法

1.1 供试材料

为大蒜(Allium sativaum L.)的 2 个品种,广州白皮大蒜(A. sativaum L. var. Taihe garlic)和大头蒜(A. ampeloparsum L.).

1.2 外植体处理及培养条件调优

大蒜在 4 ℃下冷藏 18 d,以室温保存为对照.蒜瓣剥去保护膜,进行表面消毒,然后切成不同大小的小块,接入愈伤组织的诱导培养基(张毅,1993),25 ℃,600 lx 光照,每天循环光照 12 h 条件下进行愈伤组织的诱导培养,18 d 后继代,转入继代培养基至稳定生长.每 2 d 观察 1 次愈伤组织诱导出现时间、污染情况以及诱导过程.

1.3 培养基调优

以带表皮,大小为 0.5 cm×0.3 cm×0.2 cm广州白皮大蒜蒜瓣作外植体,采用均匀设计的

1998-10-05 收稿 李志勇,男,27 岁,现为华南理工大学博士生

* 国家自然科学基金(29676017)资助项目

方法(栾军,1995)对诱导培养基进行添加激素配比调优.

2 结果与分析

2.1 外植体的表面消毒效果

诱导及继代过程中,外植体的污染情况为:广州白皮大蒜室温保存(CK)及 4 ℃冷藏 18 d 处理外植体污染率分别为 35%和 20%;对应大头蒜为 12%及 0. 由此可见,大头蒜较白皮大蒜对污染物具有一定的抑制能力,且其肉眼可见的污染物只出现在继代阶段,这可能是由于继代培养基中存在酪蛋白水解物成分,有利于污染微生物生长,使在诱导阶段受抑制的微生物得以繁殖.另一方面,从以上结果可知,4 ℃冷藏有利于抑菌,减少污染率,其原因可能是冷藏使组织携带微生物生命力减弱,在外植体组织表面消毒过程中可被杀灭所致.

2.2 愈伤组织的诱导过程

对大头蒜,前 5 d 愈伤组织生长缓慢,形态基本不变,6 d 开始外植体表皮组织细胞分裂加快,在外植体表皮中间部位开裂,组织外翻,随着细胞的进一步分裂,表面开始出现淡黄色的小颗粒,随培养条件或处理条件的不同,进一步形成不同形状的愈伤组织,有的呈皱缩状,有的呈堆积生长并向四周扩展,外观较为松脆,但经多次继代后,愈伤组织由松脆渐转致密;对广州白皮大蒜,其生长前期约为 7 d,形态基本不变,此后,从组织切口部位与培养基接触周缘开始肿大,然后整个组织由下向上膨大隆起,起初在组织的顶端(即芽分生组织处)出现绿色,后随培养时间的延长而逐渐变浅消失,愈伤组织多呈淡黄色,在组织与培养基的交界处最早产生的愈伤组织,偶呈红褐色且随培养时间的延长而加深,外观较致密,经多次继代后,愈伤组织由致密渐转松脆.总的来说,广州白皮大蒜与大头蒜品种对愈伤组织诱导无显著差异,考虑到大蒜细胞培养需要松脆的愈伤组织,宜选用广州白皮大蒜作为外植体材料.

2.3 外植体大小、取材部位对愈伤组织产生的影响

将大蒜取不同部位(分带表皮与不带表皮)切成 4 种不同规格大小,接入愈伤组织诱导培养基进行愈伤组织的诱导,18 d(1 次继代期)后统计愈伤组织的产生情况,其结果见如表 1.

		外植体大小			
大蒜种类	取材部位	0.5 cm × 0.3cm	$0.4 \text{cm} \times 0.2 \text{ cm}$	$0.3\text{cm} \times 0.2 \text{ cm}$	$0.2\text{cm} \times 0.2 \text{ cm}$
		$\times 0.2$ cm	×0.1 cm	×0.1 cm	×0.1 cm
广 州	带表皮	+ + +	+ +	+ +	_
白皮大蒜	不带表皮		-	-	-
大 头 蒜	带表皮	+ + +	+ +	+	_
	不带表皮		_	_	-

表 1 大蒜不同部位不同大小的外植体的愈伤组织诱导情况1)

从表 1 可见,外植体的取材部位对愈伤组织产生有显著影响,不论是白皮大蒜还是大头蒜,只有带表皮的外植体才可产生愈伤组织,而不带表皮的外植体均不产生愈伤组织;另一方面,愈伤组织的产生也与外植体的大小有关,对以上 4 种不同规格大小的外植体,外植体的大小在 $0.5~{\rm cm}\times0.3~{\rm cm}\times0.2~{\rm cm}$ 对 $0.5~{\rm cm}\times0.3~{\rm cm}\times0.2~{\rm cm}$ 对 $0.5~{\rm cm}\times0.3~{\rm cm}\times0.2~{\rm cm}\times0.2~{$

^{1) + + +} 愈伤组织产生多; + + 愈伤组织产生较多; + 可见愈伤组织; - 不见愈伤组织或产生极少,只有表皮纵形开裂

0.1 cm 以下时,极少或不产生愈伤组织.

2.4 冷藏处理与愈伤组织的产生

如表 2 所示,冷藏处理对愈伤组织产生有一定作用,可使 2 种大蒜的愈伤组织出现时间略为推迟 1~2 d,但对广州白皮大蒜愈伤组织的颜色、外观和生长量的影响均不明显.冷藏处理可使大头蒜愈伤组织的颜色加深,外观不规则,呈皱缩状且愈伤组织的增长速度较慢.

大蒜种类	处 理	愈伤组织出现时间 t(接种后天数)/d	颜 色	外 观	愈伤组织 ¹⁾ 生长量
广州白皮大蒜	冷藏	8 ~ 10	白至浅绿、淡黄	隆起、致密	+ +
	CK	6~8	同上	同上	+ +
大头蒜	冷藏	7 ~ 9	黄棕色或黄褐色	皱缩、不规则	+
	CK	6~8	淡黄	平滑、堆积生长	+ +

表 2 冷藏处理对大蒜愈伤组织产生的影响

2.5 诱导培养基的调优

采用 MS 基本培养基,寻找最佳添加激素配比.选取 BA(X_1)、KT(X_2)、2,4 – D(X_3)和 IBA(X_4)4个因素,它们的变化范围为: X_1 :1.0~2.2; X_2 :0.6~1.4; X_3 :1.9~3.1; X_4 :1.0~2.2,单位为mg/L,各取5个水平.选取均匀设计表 U₅(S^4),均匀设计的试验方案 U₅(S^4)及结果见表 3.

试验号 -	$X_1/(\text{mg}\cdot \text{L}^{-1})$	$X_2/(\text{mg}\cdot \text{L}^{-1})$	$X_3/(\text{mg}\cdot \text{L}^{-1})$	$X_4/(\text{mg}\cdot \text{L}^{-1})$	Y(愈伤组织
	BA	KT	2,4-D	<i>IBA</i>	生长量)
1	1.0(1)	0.8(2)	2.5(3)	1.9(4)	1.06
2	1.3(2)	1.2(4)	1.9(1)	1.6(3)	0.53
3	1.6(3)	0.6(1)	2.8(4)	1.3(2)	0.75
4	1.9(4)	1.0(3)	2.2(2)	1.0(1)	0.63
5	2.2(5)	1.4(5)	3.1(5)	2.2(5)	0.75

表 3 试验方案 U₄(5⁴)及结果¹⁾

1)表中圆括号为水平标号;愈伤组织生长量计算标准:0为不长出愈伤组织;1为可见愈伤组织生长,但仅有少量;2为愈伤组织在外植体接触培养基处布满整圈;3为愈伤组织布满外植体且厚度较大.每一试验号10个重复

试验结果经二次回归计算,得回归方程为: Y=0.394+0.122 $X_1^2-0.463$ $X_1X_4+0.294$ X_3X_4 ,其显著性检测 F=8.32,在显著水平 $\alpha=0.05$ 下是可信的.回归模型在试验范围内成立,即 X_1 、 X_3 和 X_4 的取值范围分别为 $0\sim2.2$ 、 $0\sim3.0$ 及 $0\sim2.2$,单位为 mg/L. 在给定

表 4 调优培养基的验证试验

试验号	Y(愈伤组织生长量)
CK 培养基	1.42
调优培养基	2.08
理论调优值	2.16

范围内对回归方程微积分求极值,当 $X_1 = 0$, $X_3 = 3.0$, $X_4 = 2.2$ 时, $Y_{max} = 2.16$. 获得的调优培养基配方为 MS + 3.0 mg/L 2,4-D + 2.2 mg/L IBA.

为了验证培养基调优配方,进行比较试验,结果见表 4,表中 CK 培养基配方见张毅(1993).

¹⁾⁺ 愈伤组织较多;++ 愈伤组织多

从试验结果来看,在调优培养基下可得到与理论调优值相近的结果,且明显优于 CK 培养基.

3 讨论

大蒜是一种适应性强、病虫害少的植物,同时也是药用价值较高的蔬菜作物之一.近年来人们在寻找新的、可靠的、低成本的 SOD 来源的过程中发现大蒜中含有丰富的 SOD 及其它抗氧化剂成分,大蒜的抗癌、杀菌和抑病毒的作用无不与此相关.利用大蒜细胞大量培养生产高附加值产品 SOD,国内郭勇领导的研究小组进行了系列研究(张毅,1993;刘叔文,1996;王霜,1997),建立了继代稳定的大蒜培养细胞系.但在大蒜细胞愈伤组织诱导方面,仅对培养基配方进行了初步的探索,并未对大蒜愈伤组织诱导条件进一步深入优化,本研究正是在已有基础上进行的补充研究.

大蒜愈伤组织的诱导所需时间及效果一般随外植体来源、取材部位、大小以及预处理的不同而表现较大差异.带表皮的外植体由于具有生活力旺盛的分生组织,有利于愈伤组织诱导,当大蒜外植体大小为 0.5 cm×0.3 cm×0.2 cm 时,继代时期愈伤组织产生量较多;随着外植体变小,愈伤组织产生量也变少.4 ℃低温保藏 18 d 有一定抑菌作用,可减少外植体出愈污染.冷藏可推迟出愈 1~2 d,但对大蒜愈伤组织诱导影响不大.另外,由于外植体的差异,所形成的愈伤组织也会出现形态发育的差异,部分愈伤组织致密,而部分愈伤组织疏松.实践表明,松脆的愈伤组织有利于大蒜细胞悬浮培养,只要稍经机械振荡,即可使组织分散成单细胞或小细胞团.故宜选用广州白皮大蒜作为外植体材.

均匀设计法是一种成熟的试验设计方法,突出优点是用较少的试验获得较多的信息,适用于多因素多水平的设计,可在科学试验上推广应用(张国权等,1998). 作者采用此设计方法,得到广州白皮大蒜优化诱导培养基配方为 MS+3.0 mg/L 2,4-D+2.2 mg/L IBA,经试验证明可取得良好的诱导效果.

参考文献

王 霜.1997.大蒜细胞培养及产超氧化物歧化酶的动力学规律研究:[学位论文].广州:.华南理工大学

刘叔文.1996.大蒜细胞 SOD 的诱导及分离纯化的研究:[学位论文].广州:.华南理工大学

刘高琼,李式军.1996.大蒜试管鳞茎微繁技术研究.南京农业大学学报,19(3):31~36

李昌华,李小川.1995. 大蒜茎尖脱毒技术及组织培养研究.华北农学院学报,10(3):20~25

张国权, 昌小欢, 罗志刚. 1998. 均匀设计的方法与应用. 华南农业大学学报, 19(2); 91~96

张 毅. 1993.大蒜细胞培养及其超氧化物歧化酶 SOD 积累的研究:[学位论文].广州:.华南理工大学

栾 军.1995.现代试验设计优化方法.上海:上海交通大学出版社,161~174

翁清清, 俞建瑛, 陶宗晋.1988. 人血红细胞的超氧化物歧化酶纯化及其稳定性的研究. 生物化学与生物物理学报, 20(4):357~363

Koch M, Tanami Z, Salomon R. 1995. Improved regeneration of shoots from garlic callus. Hortscience, 30 (2): 378 Mohamed - Yasseen Y, Sheryl A Barringer, Walter E S. 1995. In vitro shoot proliferation and plant regeneration from

kurrat(Allium ampeloprasum var. kurrat) seedings. Plant Cell, Tissue and Organ Culture, 40(2): 195 ~ 196

Myers J M. 1995. Induction and regeneration of callus in suspension culture of garlic (Allium sativaum L.). In Vitro, $31(3) \cdot 2 \sim 54A$

Schavemaker C M, Jacobsen E. 1995. Development of a cyclic somatic embryogenesis regeneration system for leek (Al-

lium ampeloprasum L.) using zygotic embryos. Plant Cell Rep, 14 (4): 227 ~ 231

Optimization of Callus Induction of Garlic

Li Zhiyong¹ Luo Huanliang² Guo Yong¹
(1 College of Food and Bioengineering, South China Univ. of Technol. Guangzhou 510641;
2 Forestry Science and Research Institute of Guangzhou)

Abstract Plant cell and tissue culture of garlic (Allium sativaum L.) was a potential alternative approach to produce SOD for the demand of medical uses. This paper deal with the optimization of callus induction of garlic, the results were obtained as follow: When the explant size with epidermis was 0.5 cm \times 0.3 cm \times 0.2 cm, more callus could be induced from the Guangzhou white peel garlic in the culture medium of MS + 3.0 mg/L 2,4-D + 2.2 mg/L IBA. There was no distinct difference between the varieties of Guangzhou white peel garlic and big head garlic in callus inducement. Under cold treatment of both garlic's explants at 4°C for 18 days the inducing contamination would be reduced but it had no significantly influence on the induction of callus.

Key words garlic(Allium sativaum L.); callus; culture medium; explant; treatment of low temperature

【责任编辑 李 珍

・简・讯・

本刊获教育部期刊评比二等奖

据国家教育部发布的通知(教技[1999]1号). 教育部开展的 1999 年度全国优秀高校自然科学学报及教育部优秀科技期刊评比活动,经组织有关专家进行评审,共评出获奖期刊 200种,其中一等奖 50种,二等奖 80种,三等奖 70种 《华南农业大学学报》荣获二等奖,并排名第三.通知还指出:该项奖励可等同于教育部科技进步奖.

华南农业大学学报编辑部