Vol. 21, No. 2 Apr. 2000

文章编号: 1001-411X(2000)02-0068-04

胸腺因子 D 对鸡生长、免疫功能及血液中某些激素水平的影响

傅伟龙, 余 斌

(华南农业大学动物科学系,广东广州510642)

摘要: 80 只 1 日龄 Avian 鸡, 随机分为实验组和对照组, 每组 40 只. 自 1 日龄开始, 实验组鸡肌肉注射胸腺因子 D (TFD), 剂量 2 mg/kg, 对照组注射生理盐水, 隔日注射, 共 5 次. 试验期 42 d. 观察 TFD 对肉鸡生长、免疫及血液中某些激素水平的影响. 结果表明: 1 注射 TFD 可显著促进 Avian 鸡生长 . 2 23 日龄时实验组鸡的外周血 T 淋巴细胞百分率 极显著高于对照组(P < 0.01). 3) 实验组在 28 日龄时血浆甲状腺素(T_4) 水平显著高于对照组(P < 0.05), 三碘甲腺原氨酸(T_5)、生长激素(G_4) 水平均不同程度高于对照组, 但差异不显著(P > 0.05).

关键词: 胸腺因子 D; 免疫; 生长激素(GH); 三碘甲腺原氨酸 (T_3) ; 甲状腺素 (T_4) 中图分类号: S 816.7 文献标识码: A

胸腺是免疫器官,为 T 淋巴细胞分化发育的场所. 它除了提供 T 淋巴细胞发育所需的微环境外,还分泌胸腺肽,影响 T 细胞的分化和成熟[1]. 胸腺肽作为一种免疫调节因子已应用于医学临床,在抗感染、免疫缺乏症的治疗上获得可喜成果[2]. 在畜牧兽医领域,也有报导胸腺肽作为添加剂添加于饮水,或用于小鸡出壳前气雾,可提高动物的免疫功能 3.4,但有关胸腺肽对动物内分泌影响涉及甚少. 本文研究了胸腺因子 D 对肉鸡生长、免疫功能及血液中某些激素水平的影响.

1 材料与方法

1.1 胸腺因子 D(TFD)注射液

由空军福州医院生产,含 TFD 2.5 g/L,批号881013.

1.2 饲养试验

试验选用 80 只 1 日龄 Avian 鸡(由广州正大康地有限公司孵化场购得),随机分成实验组和对照组,每组 40 只,逐只称重,两组鸡开始体重差异不显著.实验组自 1 日龄开始肌肉注射胸腺因子 D (TFD),隔日注射 1 次,共 5 次,每次剂量为 2 mg/kg,对照组注射生理盐水.

两组鸡饲喂含代谢能 13 0~13 4 MJ/kg、粗蛋白质量分数为 21%~23%的相同饲料.鸡只地上铺垫料平养 自由采食及饮水,全日制光照,1~20 日龄时用红外线灯保温,所有鸡按常规用鸡马立克病和鸡新城疫疫苗,进行免疫接种,试验期 42 d.

1.3 测定项目

TFD 对鸡增重的影响:每周逐只称鸡个体重,计

算日增重、饲料转化率和成活率.

TFD 对鸡免疫功能的影响: 23、38 日龄时从每组各抽取 8 只鸡测定外周血 T 淋巴细胞百分率. 测定方法参照 T 淋巴细胞酸性 α -醋酸萘酯酶法 (ANAE),并做如下改动: (1)不分离淋巴细胞,趾静脉采血后直接制血涂片. (2)制片后自然干燥进行孵育. (3)孵育液中 α -醋酸萘酯酶由 0.2 g/L 改为 0.4 g/L (4)孵育时间为 2.5 h.

血液中激素浓度的测定: 14.21.28.35.42 日龄时从每组选 10 只鸡,跖静脉 采血 2 mL,肝素钠抗凝,2500 r/min 离心 15 min,吸取上层血浆,-20 [©]保存.采用放射免疫分析法 (RIA)测定血浆中 $T_3.T_4$ 、GH 的浓度,试剂盒分别用 北方免疫研究所 研制的 $I^{125}-T_3.I^{125}-T_4.I^{125}-h$ GH 试剂盒,操作方法按各药盒说明书进行,但 GH 测定采用的药盒是 hGH-RIA,预备试验中发现人的 GH与鸡的 GH有一定的交叉反应,但反应较低,因而测定 GH 时多增设一个最低标准浓度 $(0.85 \, P_{\rm g}/L)$.

1.4 数据处理与统计

组间体重、T 淋巴细胞百分率用 t 检验分析差异显著性,血液中 T_3 、 T_4 、GH 浓度用 Duncan 氏检验,数据以平均值 \pm 标准差 $(X\pm SD)$ 表示。

2 结果

2.1 TFD 对鸡增重、饲料转化率、成活率的影响由表 1、表 2 可见, 在试验开始时两组鸡体重差异

表 1 TFD 对鸡体重的影响1)

Tab. 1 Effect of TFD on body weight of chickens

(体重¹¹body weight/kg					
组别 group	1 日龄	14 日龄	21 日龄	28 日龄	35 日龄	42 日龄
	day 1	day 14	day 21	day 28	day 35	day 42
对照组 control	49. 28±4. 12	358.72 ± 63.61	603. 01 ±147. 76 a	864. 22 ±143. 47 a	1 325. 63±281. 24 a	1 702. 20±395. 80 a
实验组 treatment	49. 01±3.75	378. 23±43. 04	691.69±71.13 b	1 024. 50±118. 45 b	1 466. 41±274. 74 b	1 939. 49±262. 88 b

¹⁾ 凡组间字母不同者差异显著(P<0.05)

表 2 TFD 对鸡饲料转化率、成活率的影响

Tab. 2 Influence of TFD on feed conversion and survival rate of chickens

组别 -	料重比 feed conversion						
	1~14 日龄	15~21 日龄	22~28 日龄	29~35 日龄	36~42日龄	1~42日龄	一 成活率 survival rate
group	day $1 \sim 14$	day 15 ~ 21	day $22 \sim 28$	day 29~35	day 36~42	day 1~42	survivai iate
对照组 control	1.37	1.81	1. 96	2. 13	2.32	1. 96	92. 5%
实验组 trealment	1.25	1.59	1. 71	1. 88	2. 15	1. 84	97. 5%

不显著(*P*> 0.05). 21 日龄开始, 实验组鸡体重高于对照组, 差异显著(*P*< 0.05), 并持续至试验末, 表明注射 TFD 对鸡增重有明显促进作用。在整个试验期间, 实验组各阶段料重比均小于对照组, 饲料报酬好, 且成活率高于对照组.

2.2 TFD 对鸡外周血 T 淋巴细胞的影响

表 3 的数据显示, 23 日龄时实验组 T 淋巴细胞百分率极显著高于对照组($P \le 0.01$). 38 日龄时虽然

表 3 TFD 对鸡外周血 T 淋巴细胞(%)的影响

Tab. 3 Influence of TFD on circulating T cell ($\frac{1}{10}$) of chickens

组别	样品数	23 日龄	38 日龄
group	number	day 23	day 38
对照组 control	8	43. 08 \pm 6. 13a	56. 50 \pm 9. 44
实验组 treatment	8	57.50±6.23b	60. 09 \pm 4. 43

1)凡组间字母不同者差异显著(P<0.05)

两组鸡的 T 淋巴细胞百分率差异不显著, 但实验组仍有高于对照组的趋势.

2.3 TFD 对血浆中 GH 质量浓度的影响

由表 4 可知, 实验组除 42 日龄外其它日龄其血浆 GH 浓度均高于对照组, 但差异不显著(P>0.05). 计算两组鸡不同日龄血浆 GH 的平均值, 对照组为 $(1.30\pm0.15)\mu_{\rm g}\,^{\circ}{\rm L}^{-1}$, 实验组为 $(1.37\pm0.18)\mu_{\rm g}\,^{\circ}{\rm L}^{-1}$, 实验组有高于对照组的趋势.

2.4 TFD 对鸡血浆中 T3、T4 质量浓度的影响

由表 5、表 6 可见,实验组鸡血浆中 T_3 浓度高于对照组,但差异不显著。在不同日龄实验组鸡血浆中 T_4 浓度一般均高于对照组(35 日龄例外),其中 28 日龄时 T_4 浓度显著高于对照组(P < 0.05),表明鸡只注射 TFD 能够提高血浆中 T_4 浓度.

表4 TFD 对鸡血浆中 GH 质量浓度 $(\mu \mathbf{g} \cdot \mathbf{L}^{-1})$ 的影响¹⁾

Tab. 4 Influence of TFD on plasma GH concentration $(\mu \mathbf{g} \cdot \mathbf{L}^{-1})$ of chickens

—————————————————————————————————————	14 日龄	21 日龄	28 日 齿令	35 日龄	42 日龄	平均值
<u>≈H 701</u> group	day 14	day 21	day 28	day 35	day 42	average
对照组 control	1. 47 \pm 0. 15(6)	$1.43\pm0.09(6)$	1.30±0.16(6)	1.15±0.18(6)	1. 17±0. 15(6)	1. 30 ± 0 . $15(30)$
实验组 treatment	1. $49 \pm 0.07(6)$	$1.54\pm0.11(6)$	1.44±0.14(6)	1.25±0.14(6)	1. 12±0. 11(6)	1. 37 \pm 0. 18(30)

¹⁾括号内为样品数

表5 TFD 对鸡血浆中 T₃ 质量浓度(μ g° L⁻¹)的影响¹⁾

Tab. 5 Influence of TFD on T₃ plasma concentration $(\mu \mathbf{g} \cdot \mathbf{L}^{-1})$ of chickens

组别	14 日龄	21 日龄	28 日龄	35 日龄
group	day 14	day 21	day 28	day 35
对照组 control	$0.97\pm0.17(8)$	1.27±0.19(8)	1.77 \pm 0.57(7)	$0.70\pm0.24(8)$
实验组 treatment	$0.98\pm0.09(8)$	$1.51\pm0.35(7)$	1.86 \pm 0.61(8)	$0.69\pm0.18(8)$

1)括号内为样品数

表 6 TFD 对鸡血浆中 T4 质量浓度(μ g°L⁻¹)的影响¹⁾

Tab. 6 Influence of TFD on plasma T_4 concentration $(\mu \mathbf{g} \cdot \mathbf{L}^{-1})$ of chickens

组别	14 日龄	21 日龄	28 日龄	35 日龄
group	day 14	day 21	day 28	day 35
对照组 control	$23.90\pm 9.26(8)$	$17.99\pm 5.81(8)$	13. 33 \pm 8. 15(7)a	$23.37\pm 8.31(8)$
实验组 treatment	26.75±4.38(8)	$21.55\pm 8.04(7)$	24.71 \pm 6.96(8)b	19.89 \pm 4.51(7)

1)括号内为样品数

3 讨论

从 60 年代开始, 已先后有许多学者开始分离提纯胸腺肽. 到目前为止, 已报道的胸腺肽有二十几种, 胸腺因子 D 是胸腺肽的一种. 关于胸腺肽提高免疫机能已有报导, 用鸡的胸腺提取液处理雏鸡, 3周后外周血淋巴细胞对植物血凝素(PHA)和刀豆素(CONA)诱导的增殖反应显著高于对照组⁵¹. 胸腺肽能使免疫机能低下的小鼠 T 淋巴细胞百分率升高⁶¹, 切除胸腺的大鼠脾脏 T 淋巴细胞增殖反应明显减弱, 注射 TFD 可逆转这一变化⁷¹. 本试验中, 通过给鸡肌注 TFD, 发现 23 日龄时实验组鸡血液中 T 淋巴细胞百分率极显著高于对照组, 至 38 日龄实验组鸡血液中 T 淋巴细胞百分率也仍有高于对照组的趋势, 表明 TFD 可提高鸡只外周血 T 淋巴细胞百分率, 这与上述研究者的报导一致.

胸腺肽不仅是一种免疫活性肽,而且对体内内分泌调控有重要作用。有报导胸腺肽可促进睾丸细胞分泌雄性激素^[8],胸腺对甲状腺有促进作用,注射胸腺提取物可使甲状腺增生,去除胸腺则甲状腺重量减轻^{9]}。胸腺肽提高血液中T淋巴细胞百分率,活化的T淋巴细胞能够产生促甲状腺激素,从而促进甲状腺分泌 T₃、T₄^[10]。胸腺对脑垂体分泌功能是不可缺少的,新生期去胸腺小鼠垂体组织形态有明显改变,嗜酸性细胞脱颗粒,嗜碱性细胞减少,如给予胸腺提取物,则垂体组织得到改善,垂体激素含量增加⁹、本次试验结果表明,注射 TFD 可显著提高实验鸡血液中 T₄ 浓度,血中 T₃ 和 GH 浓度也有比对照组高的趋势,与此同时,实验组鸡血液中 T 淋巴细胞百分率也增高,可见胸腺肽不仅能提高机体的免疫能力,而且对机体内分泌活动有重要的影响。增强了腺垂体、

甲状腺的活动. 胸腺肽促进甲状腺的活动可能通过以下两种途径, 一是直接作用于甲状腺, 促进其分泌 T_3 、 T_4 ; 另一是通过提高血液中活化的 T 淋巴细胞而促进促甲状腺素的分泌, 增强甲状腺的活动.

饲养试验结果表明,在相同饲养管理条件下,注 射 TFD 的鸡增重自 21 日龄起比对照组快并持续至 试验结束. 其原因可能与 TFD 对鸡机体的免疫、内 分泌调控有关.一方面,TFD 可提高机体的免疫功 能, 虽然免疫系统的建立和维持需耗费相当数量的 营养物质,但在一般的生产条件下,畜禽生活的外部 环境存在大量的病原微生物,这些病原微生物可通 过畜禽呼吸道、消化道进入机体,这对于免疫功能低 下的个体,轻者可降低生长速度,重者则引起急性、 慢性疾病, 导致动物生长停止甚至死亡 . TFD 提高机 体的细胞免疫水平,利于免疫系统抑制病原菌,避免 进入体内的病原菌扰乱机体内环境的稳定, 使机体 能集中更多的营养物质用于生长. 另一方面,注射 TFD 提高了血液中 T4、T3、GH 浓度. GH 主要促进组 织生长, T₄、T₃ 促进器官、组织的分化, 同时, GH 的促 生长作用需要有适量的 T_4 、 T_3 存在.本次试验中,注 射 TFD 的实验组鸡只血液中 T4 浓度显著高于对照 组(P < 0.05), T₃、GH 的浓度有升高趋势, 从而对鸡 只增重有促进作用.

致谢: 实验过程得到张 継、江青艳、戴远威、邱月娥等老师的指导和帮助, 特此致谢!

参考文献:

- PETER D, OLIVER. Avian thymic accessory cell[J]. The Journal of Immunology, 1984, 132: 1 748 ~ 1 755.
- shing House: AN Thinks reserved 生物制品学(Mankitas:

人民卫生出版社, 1995. 961~962.

- [3] PRIDYBAILO. Thymus extract enhances vaccination effectiveness[J]. Poultry International, 1991, (7): 30 ~ 34.
- [4] 王兴金, 何后军, 谌南辉. 胸腺提取液喂鸡的试验研究 [J]. 中国家禽, 1993、(6): 27~29.
- [5] MURTHY K K, RAGLAND W L. Effect of thymic extract on blastongenic respones of chickens[J], Poultry Science, 1992, 71(2): 311~315.
- [6] 刑淑贞. 胸腺肽对小鼠免疫功能影响的实验研究[J]. 哈尔滨医科大学学报. 1993. 27(2): 92~93.
- [7] 李 林. 胸腺对雌性大鼠肝脏抗氧化功能的影响及其

- 与细胞免疫、性激素水平的关系[J]. 生理科学进展, 1992, (3): 197~200.
- [8] WISET, FORD J.J. Effect of the Thymic Peptide Thymulin on In Vitro and In Vivo Testicular Steroid Concentration in White Composite and Meishan Board[J]. J Anim Sci. 1999, 77: 2 240~2 251.
- [9] 李柏青. 胸腺-神经内分泌网络的研究[J]. 国外免疫学分册, 1989, 12(1): 25~29.
- [10] BLALOCK J E. A molecular basis for biddirectional communication between the immune and neuroendocrine systems[J] . Physical Rev, 1989 69:1~32.

Effects of Thymic Factor D on Growth, Immunological Function and Blood Hormone Level in the Chicken

FU Wei-long, YU Bin

(Dept. of Animal Science, South China Agric. Univ., Guangzhou 510642, China)

Abstract: Eighty day-old chickens were randomly divided into two groups (n=40). The treated group was injected via sternal muscle with thymic factor-D at 3 mg/kg body weight every other day from day 1 to 10, while the control group was given the same volume of sterile 0.9% NaCl. All chickens were weighed once a week from day 14 on wards. Blood samples were collected and the concentrations of thyroxine (T₄). Trilodothyroxine (T₃) and growth homone (GH) in the plasnas were measured by radioimmunoassay (RIA). The percentage of T cells were calculated on day and 23, 38. The results showed that: 1) Injection with TFD promoted growth. 2) On day 23, the percentage of T cells between treated group and control group was significantly different (P<0.01). 3)The concentration of T₄ between the two groups was different (P<0.05) on day 23. The concentrations of T₃ and GH of the treated group were higher than those of the control, but the difference was not significant (P>0.05).

Key words: thymic factor D(TFD); immune; growth hormone (GH); trilodothyroxine (T₃); thyroxine (T₄)

【责任编辑 柴 焰】