文章编号: 1001-411X (2000) 02-0085-03

一种用于水果碰压伤面积检测的数学模型

邓继忠, 张泰岭, 洪添胜

(华南农业大学工程技术学院,广东广州510642)

摘要: 依据所研究的梨、苹果等品种水果的外形以及碰压伤特征, 提出了一个简单的计算碰压伤面积的数学模型. 实验结果表明, 与统计像素的方法相比, 用该模型可大大提高测量精度.

关键词: 水果: 碰压伤: 面积检测: 数学模型

中图分类号: S 233.5; TP 751

文献标识码: A

国家标准 GB10650-89 与 GB10651-89 对梨和苹 果的分类、检验方法等作了详细规定、将梨、苹果的 等级分为优等品、一等品、二等品等 3 级、等级规格 指标中,对碰压伤的数目、每处的损伤面积都作了规 定, 碰压伤面积的大小直接影响水果的等级, 采用 计算机视觉技术检测果面缺损时,碰压伤的确定一 般是依据其形状因子,假定 A、P 分别为可疑表面 的面积、周长、形状因子 $T=4\pi \times A/P^2$ 、若 T 趋近 1、 则认为可疑表面为碰压伤[1],碰压伤面积常以其投 影的图像平面面积为测度[1~3],并用该区域的像素 总和所描述, 可将这种测量方法称为统计像素法, 由于投影畸变的影响,该方法测量精度不高。因此 为提高水果分级检测的精度,对碰压伤面积的计算 方法有进一步研究的必要。本文基于所研究的水果 的形状及碰压伤的特征,提出了一个简单的计算碰 压伤面积的数学模型,并通过实验验证其测量精度,

1 测量面积的数学模型

采用计算机视觉进行水果分级检测的研究中,通常将梨、苹果、桃等品种的水果外形作为球体或类球体看待。同时缺损分类中,碰压伤的分类依据是缺损表面的形状接近于圆,因此有理由将碰压伤作为圆形处理。基于上述两点假设,现以球面上一个任意大小的圆形区域来代替水果及果面上的碰压伤,由此推导出计算碰压伤面积的数学模型。

图1所示为当摄象机光轴过球心且垂直于纸面时,一个圆形区域在球面的不同位置时在图像上的畸变情况。这种畸变是一种投影畸变,产生畸变的原因是该区域

图 1 球面上圆的投影畸变 Fig. 1 The distortion projection of circle on the sphere

中心法线与摄像枪光轴有夹角. 当圆形区域中心与光轴中心重合,则其在图像上呈圆形,如果圆形区域处于球面边缘位置,则投影区域呈椭圆形. 如图 2 所示,用和球体中心轴 Z-Z' 互相垂直的两个平面 A_1 、

于 A_1 - A_2 之间的球面上,且与平面 A_1 、 A_2 都相切的圆形区域 Ω , 不论处于哪个位置,其在球体圆周 (代表水果外形轮廓线)上

 A_2 去截球体, 则位

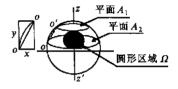


图 2 碰压伤处于非边缘位置 Fig. 2 The bruising away from the edge of projection of a pear

的投影弧长均为OO',因此,可以把弦长OO'作为圆形区域的直径来计算投影面积,弦长与圆形区域在何位置无关,这样就克服了投影面积的畸变问题,数学关系也很简单。采用计算机视觉进行分级检测时,为获取水果所有的外部信息,一般拍摄两幅或两幅以上不同角度的图像,考虑到检测的实时性,图像不宜过多。拍摄时,摄像机光轴与水果中心轴ZZ'垂直,且镜头大致位于水果中部,这样拍摄水果纵切面与摄像机镜面呈 0° 和 180° 的(正反面)两幅图像已经能够反映碰压伤的所有信息。

1.1 碰压伤处于非边缘位置

参考图 2 摄取的两幅图像中, 碰压伤仅在其中的一幅上有所反映, 则,

测量直径
$$D = OO' = \sqrt{x^2 + y^2}$$
, (1)

若 O'点所在像素位置为 (i_1, j_1) , O 点所在像素位置为 (i_2, j_2) ,则式(1)可表示为:

$$D = \sqrt{(i_2 - i_1)^2 + (j_2 - j_1)^2}, \qquad (2)$$

测量面积
$$S = \pi {}^{\circ}D^2/4$$
. (3)

1.2 碰压伤处干边缘位置

碰压伤处于边缘位置时,同一处碰压伤在两幅图像上都有所反映,此时,不能简单以图3所示(假定为正面图像)的弦长作为测量直径,因为正面图像所反映出来的碰压伤区域可能是整个区域的一小部分,过上、下边界点 e_1 、 e_2 且与纵轴 Z-Z 垂直的两个平行平面不一定能包容整个碰压伤区域,因此还需经过对正反两幅图像的判断,才能得到测量直径.

(1)参考图 3, 对于正面图像,首 先找到碰压伤区域 的 4 个边界点 e_1 、 e_2 、 e_3 、 e_4 ,采用公 式(2)计算出 e_1 、 e_3 对应的弦长 OO'和 e_2 、 e_4 对应的弦长 O_1O_1' ,进行比较 取大者,即,D'= $\max\{OO',O_1O_1'\}$;

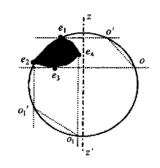


图 3 碰压伤处于边缘位置 Fig. 3 The bruising on the edge of projection of a pear

(2)对于反面图像,方法完全同(1),可得D'';(3)测量 直径 $D=\max \{D', D''\}$.

寻找直径的基本思想: 圆形区域中直径是最长的弦. 式(2)、(3)即为计算碰压伤面积的数学模型.

2 检测方法

实验样品为市售河北鸭梨,根据梨的最大横切面直径将其分为大、中、小3种规格,3种规格的尺寸分别约为74、66、60 mm 选择3种规格梨样品各10个.采用模拟碰压伤的方式(简称模型法),对碰压伤面积、位置进行组合实验,并与统计像素法进行对比.

2.1 图像面积标定

面积标定是确定在距摄像机镜头一定距离下摄取的图像,实际单位面积是由多少个像素所描述.考虑到实际检测中的实时性要求,本实验以上述中型果为基准,只标定一次.本实验标定结果为:单位标定面积 $S_{bd}=270$ 个像素/ cm^2 . 若碰压伤实际面积为 $S_{r}(cm^2)$,则其标定面积 S_{bd} 可用像素数表示:

标定面积
$$S_{\text{rbd}} = S_{\text{r}} \times S_{\text{bd}}$$
 (个像素数). (4)

2.2 实验方法

将实验分为两部分,考察不同的碰压伤面积及 同一品种不同规格的梨对测量面积有何影响。

不同碰压伤面积的测量以中型规格的 10 个梨为样品,选择 3 种直径的碰压伤,分别为 1.3、1.6、 1.9 cm,对应标定面积为 $S_{10}=359$, $S_{20}=543$, $S_{30}=100$

764. 在实验中要求: (1)每次测量中,碰压伤处于样品的不同位置; (2)同一位置(同一幅图像)的碰压伤,采用模型法(利用式(2)、(3)计算)和统计像素法各测量 1次; (3)每种直径用两种方法各测量 20次。实验次数共计 120次。

不同规格梨的测量: 因标定是以中型果为基准进行的,因此有必要验证对小型果、大型果所产生的系统误差. 为便于比较,碰压伤直径均取 D=1.3 cm. 实验要求与不同碰压伤面积的测量方法相同,3 种果型实验次数共计 120 次.

用相对误差来衡量每次实验的测量精度,用平均相对误差评价两种方法的测量精度。相对误差 $e=(测量面积 - 标定面积)/标定面积<math>\times 100\%$,测量面积以像素数表示,平均相对误差为

$$\bar{e} = \frac{1}{n} \sum_{i=1}^{n} |e_i|, n \text{ 为样本数}, n = 20.$$
 (5)

3 检测结果与分析

检测结果见表 1、表 2.

由实验结果可知,无论碰压伤面积(直径)及水果的规格如何,模型法的每一位置(序号)的相对误差均远小于统计像素法,且相对误差大部分控制在一0.1~+0.1之间,除个别点外(如中型规格梨序号10),其余均可控制在±20%内,总的平均相对误差为6.67%,统计像素法的测量精度则较低,总的平均相对误差为26.86%. 因此这种计算方法具有相当的准确性

实验表明,碰压伤面积对测量精度影响不大,但碰压伤所处位置和梨的果形对测量精度影响较大,通常在梨的顶部误差较大,如表 1 中型规格的梨序号 10 实验,碰压伤处于梨的顶部,原因是检测面积的数学模型是建立在球体或类球体基础上的,而梨的顶部更多呈现出锥形。在实际检测中,可以在检测程序中判断碰压伤的重心位置,若碰压伤靠近顶部,可对测量值加一修正参数。

对于不同规格的梨的测量,小规格梨的测量精度要低于中、大型规格,原因在于面积标定是以中型规格梨的上顶面为标定平面.

4 结语

基于梨、苹果等类型的水果具有球体或类球体的外形特征,以及在利用计算机视觉技术的分级检测中,可将碰压伤视为圆形处理的特点,本研究导出了一个计算碰压伤面积的数学模型,模型形式简单经实验证实,基本消除了因碰压伤位置不同而对测量精度产生的较大影响,测量精度要高于统计像素

表 1 碰压伤面积的测量值与相对误差

Tab. 1 Measurements and relative errors of bruising area

		D=1.6	$5 \text{ cm} (S_{2bd} = 543)$)	中型规格的梨 middle size of pear (S _{1ld} =359)					
序号	模型法 model method		统计像素法 summing pixels method		模型法 model method		统计像素法 summing pixels method			
No										
	$S_{ eal}$	e/ %		e/ ⁰ / ₀	S 测	e/ %	S 测	e/ %		
01	468	13. 81	393	27. 62	387	7.80	278	22. 56		
02	493	9. 21	348	35. 91	368	2.51	250	30. 36		
03	531	2. 21	404	25. 60	362	0.84	244	32. 03		
04	511	5. 89	402	26. 00	366	1.95	314	12. 53		
05	544	0. 18	436	19. 71	303	15.60	236	34. 26		
06	503	7.37	488	10. 13	359	0.00	259	27. 86		
07	534	1.66	410	24. 49	366	1.95	284	20. 89		
08	498	8. 29	485	10. 68	366	1.95	261	27. 30		
09	503	7. 37	389	28. 36	368	2.51	287	20.06		
10	548	0. 92	363	33. 15	287	20.06	206	42. 62		
11	548	0. 92	381	29. 83	303	15.60	292	18. 66		
12	534	1.66	423	22. 10	379	5.57	280	22. 01		
13	485	10. 68	331	39. 04	322	10.30	257	28. 41		
14	557	2. 58	372	31. 49	379	5.57	230	35. 93		
15	595	9. 58	476	12. 34	378	5.29	274	23. 68		
16	485	10. 68	368	32. 23	317	11.70	291	18. 94		
17	531	2. 21	390	28. 18	359	0.00	331	7. 80		
18	529	2. 58	396	27. 07	368	2.51	276	23. 12		
19	585	7. 73	430	20. 81	347	3.34	238	33. 70		
20	511	5. 89	385	29. 10	334	6.96	253	29. 53		

表 2 两种方法的平均相对误差(%)

Tab. 2 Average value of relative errors for different detecting methods (%)

		0						
方法	不同碰压伤直径的平均相对误差 average value of relative errors for different sizes of bruising			不同规格梨的平均相对误差 average value of relative errors for different sizes of pear				
methods				大型规格	中型规格	小型规格	平均	
	D = 1.3 cm	<i>D</i> =1.6 cm	D= 1.9 cm	large size	middle size	small size	mean	
模型法 model method	6. 38	5. 57	7.27	5.93	6.10	8. 79	6.67	
统计像素法 summiny pixels method	26. 11	25. 69	26. 34	27. 26	25.61	30. 15	26. 86	

法,检测速度较快.因此本文建立的数学模型是可行的.

参考文献:

[1] REHKUGLER G, THROOP J. Apple sorting with machine

- Vision[J]. Trans of the ASAE 1986, 29(5): 1 388~1 397. 李晓明, 岩尾俊男. 新鲜水果损伤的图像检测系统(第二报)[J].[日]农业机械学会志, 1994, 56(1): 37~41.
- [3] MILLER B, DELWICHE M. A color vision system for peach grading J. Trans of ASAE. 1989, 32(4): 1 484~1 490.

A Mathematical Model for Fruit Bruising Detection

[2]

DENG Ji-zhong, ZHANG Tai-ling, HONG Tian-sheng (College of Polytechniq, South China Agric, Univ., Guangzhou 510642, China)

Abstract: According to the external appearance of pear and apple, and their bruising character, a simple mathematical model was suggested. Compared with the method of summing pixels, the measuring precision could be improved greatly with the aid of this model.

Key words: fruit; bruising; area measurement; mathematical model

【责任编辑 柴 焰】