Vol. 21, No. 2 Apr. 2000

文章编号: 1001-411X(2000)02-0091-02

# 改性磷肥的红外光谱谱学特征初报

吴平霄, 毛小云, 廖宗文

(华南农业大学资源环境学院,广东广州510642)

## The IR Characteristics of Modified Phosphate Fertilizers (Preliminary Report)

WU Ping-xiao, MAO Xiao-yun, LIAO Zong-wen

(College of Natural Resources and Environmental Science, South China Agric, Univ., Guangzhou 510642, China)

关键词: 改性磷肥; 红外光谱; 谱学特征

Key words: modified phosphate fertilizers; IR; spectra characteristics

中图分类号: S 143. 2+1

文献标识码: A

土壤缺磷是制约我国农业生产发展的重要因素之一,我国南方红壤地区,由于土壤 Fe、AI 含量高,普通磷肥极易被固定,缺磷现象尤为严重. 我们利用有机和无机改性材料活化磷矿粉,在实验室条件下,研制出3种新型改性磷肥,在固磷性极强和有效磷含量极低的红壤上表现了较好的肥效,改性磷肥较普通过磷酸钙生物量增加20%以上,改性磷肥植株吸磷量较普通过磷酸钙也有较大提高<sup>11</sup>. 为研究其结构变化的改变对其肥效机理的影响,我们对其红外光谱的谱学特征进行了初步研究,现初报如下.

### 1 材料与方法

改性磷肥的制作工艺过程及盆栽试验见文献[1]. 取添加剂A 20 g 与 100 g 磷矿粉混匀, 加水 100 mI, 搅拌均匀, 缓缓加入适量浓硫酸, 边加边搅拌, 风干即制得改性磷肥 I 仿上法分别制得改性磷肥 II 和改性磷肥 III, 3 种改性磷肥分别记为 GXI、GX III、以不加添加剂的处理得酸处理 P 肥、记为 CKH、普通过磷酸钙记为 SP. 开阳磷矿粉记为 KYIK 红外光谱 (IR)分析采用中国科学院广州地球化学研究所的Perkin—Elmer 1725 X 型 FT—IR 红外谱仪, 称重 1 mg, 用 KBr

压片.

### 2 结果与分析

经不同处理的磷肥的红外光谱谱学特征有很大的差别。 图1为不同磷肥主要红外吸收谱峰图,表1为不同磷肥主要 红外吸收谱峰的归属,从图 1 并参照《矿物红外光谱图集》的 相应标准图谱可以看出[2],开阳磷矿粉为典型的碳氟磷灰 cm<sup>-1</sup>、1 430 cm<sup>-1</sup>为磷矿粉中 CO<sub>3</sub><sup>2-</sup> 反对称伸缩振动 v<sub>3</sub> 吸收 谱, 865 cm<sup>-1</sup>为 CO<sub>3</sub><sup>2-</sup>v<sub>2</sub> 吸收谱; 1098 cm<sup>-1</sup>、1048 cm<sup>-1</sup>为磷矿 粉中 PO<sub>4</sub><sup>3-</sup> 反对称伸缩振动 v3 吸收谱, 966 cm<sup>-1</sup> 为 PO<sub>4</sub><sup>3-</sup> 对称 伸缩振动 $v_1$  吸收谱,  $606 \text{ cm}^{-1}$ 、 $569 \text{ cm}^{-1}$ 为  $PO_4^{3-}$  弯曲振动 $v_4$ 吸收谱,  $472 \text{ cm}^{-1}$ 为  $PO_4^{3-}$  $\upsilon_2$  吸收谱. 不同磷矿原料经不同处 理后,其红外谱发生很大变化,表现为:1)出现羟基伸缩振动 吸收谱  $3459 \text{ cm}^{-1}$ , 2) 与  $CO_3^{2-}$  有关的吸收谱消失, 3)  $PO_4^{3-}$ 的 吸收谱发生较大变化,出现相应的H<sub>2</sub>PO<sub>4</sub><sup>-</sup>和HPO<sub>4</sub><sup>2-</sup>的特征吸 收谱. SP 的红外光谱则主要表现为 CaH<sub>2</sub>PO<sub>4</sub> 的吸收谱特征. 从 磷矿粉到改性磷肥的红外光谱谱学特征的变化实际上表明,在 活化改性过程中,P的吸收振动是向有效化方向转变的。

表 1 不同磷肥主要红外吸收谱峰的归属

Tab. 1 The main IR spectra adscription of different fertilizers

| 样品名称   |                         | 主要吸收图谱 main adsorb spectra / (cm <sup>-1</sup> ) |                              |
|--------|-------------------------|--------------------------------------------------|------------------------------|
| sample | high frequency zone 高频区 | intermediate frequency zone 中频区                  | low frequency zone 低频区       |
| KYLK   | 3442                    | 1635, 1455, 1430, 1098, 1048, 966                | 865, 695, 606, 569, 472, 327 |
| SP     | 3415, 3208              | 1666, 1624, 1402, 1157. 5, 963                   | 677, 613, 597, 512           |
| CKH    | 3549, 3407              | 1622, 1401, 1153, 1115, 964                      | 673, 603, 508                |
| GXI    | 3549, 3407              | 1685, 1621, 1401, 1147, 1115, 963                | 671, 603, 508                |
| GXII   | 3549, 3405              | 1685, 1622, 1402, 1130, 964                      | 671, 603, 511                |
| GXIII  | 3608, 3553, 3407, 3181  | 1621, 1401, 1152. 5, 965                         | 677, 601, 510                |

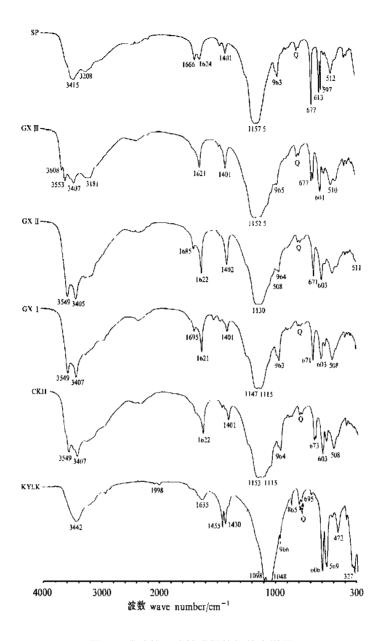



图 1 磷矿粉及改性磷肥的红外光谱图

Fig. 1 IR of phosphate rock and modified phosphate fertilizers

### 3 讨论

不同形态的磷在土壤中被固定的速度是不同的. 从改性磷肥红外光谱谱学特征分析可以看出, 酸处理-P 有效磷中游离 $H_2PO_4$ <sup>-</sup>离子含量高, 施入土壤后与 Fe、Al 等较快反应而固定快. 而在 3 种改性磷肥中,  $H_2PO_4$ <sup>-</sup>、 $HPO_4$ <sup>2</sup>-离子可能通过 $Ca^{2+}$ 与添加剂形成多元络(螯)合物, 或通过表面吸附及包被作用减少了其有效磷在土壤中的固定, 从而大大增加了其生物有效性, 这在盆栽试验中亦得到了证实.

#### 参考文献:

- [1] 毛小云, 吴平霄, 廖宗文. 几种改性磷肥肥效研究初报 [J]. 土壤与环境 1999 8(4): 318~320.
- [2] 彭文世,刘高魁. 矿物红外光谱图集 M]. 北京:科学出版社,1982.247~295.
- [3] 彭文世, 刘高魁, 柯丽琴. 某些磷灰石矿物的红外吸收 光谱[1]. 矿物学报, 1986, 6(1): 26~35.

### 【责任编辑 李 玲】