文章编号: 1001-411X (2000) 04-0036-04

无色杆菌毒蛋白对菜粉蝶中肠的组织病理学影响

田世尧1, 王晓容1, 潘建平1, 刘 卫2, 庞 义3

(1 广东省农科院果树研究所,广东 广州 510640; 2 中国科学院华南植物研究所,广东 广州 510650; 3 中山大学生物防治国家重点实验室,广东 广州 510275)

摘要: 无色杆菌毒蛋白经口进入菜粉蝶幼虫体内 6、12、18、24 h 以后,菜粉蝶幼虫的中肠组织逐渐遭到破坏,开始有些肠壁细胞伸长,在顶端形成囊泡,以后囊泡和细胞核脱落进入肠腔. 处理后期临近死亡的幼虫中肠肠壁组织被严重破坏,仅残留基层细胞,并形成一些空腔,从而影响昆虫的正常取食. 表明这种毒蛋白能引起菜粉蝶幼虫肠道严重的病理变化.

关键词: 菜粉蝶: 无色杆菌毒蛋白; 中肠; 组织病理学中图分类号: S476 文献标识码: A

泰山1号昆虫病原线虫(Heterorhabditis sp.)对多 种重要的农业害虫均有很高的杀伤效果[1,2],起毒杀 作用的主要原因是线虫的共生菌——无色杆菌 (Photorhabdus luminescens)在寄主体内大量繁殖,导致 寄主昆虫死亡. 前期实验证明, 无色杆菌分泌一种外 毒素讲入培养液中,这种外毒素对寄主昆虫有注入 和口服双重毒性[3].在虫体内,这种毒素直接进入昆 虫血腔,对寄主起毒杀作用.据作者初步研究得知, 这种外毒素为一种高分子量的毒蛋白(protein toxin) 复合物(简称为 plpt). 由于毒蛋白的作用, 导致寄主 昆虫一些组织和器官发生病变而死亡. 国外近期对 这种菌也进行了研究,结果证明,这种毒蛋白作用干 寄主昆虫的中肠组织[45],而且对寄主昆虫同样有注 入和口服双重毒性,这一点与作者的研究相符,有学 者认为,这种杀虫蛋白有可能打破苏云金杆菌 (Bacillus thuringiensis)的垄断^[6],成为新的害虫控制 武器[7].

本文以菜粉蝶(*Pieris rapae*)幼虫作为供试昆虫,对感染 plpt 后的幼虫中肠组织进行了病理学观察. 现将作者所分离的毒蛋白对菜粉蝶幼虫中肠的组织病理影响报道如下.

1 材料与方法

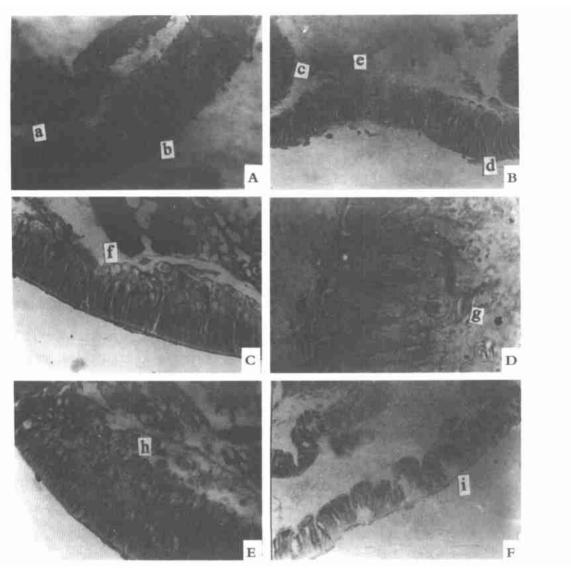
从无色杆菌发酵液中,以丙酮分级沉淀等方法 提取 plpt.

采自野外的菜粉蝶幼虫,室内[温度 (27 ± 1) °、自然光照和湿度]喂养至5龄,饥饿4h后,用涂有

plpt 的叶片喂食,对照用清水.观察幼虫的取食情况,并分别取出取食6、12、18、24 h 及处理后期临死前的幼虫中肠组织,立即浸在固定液中.按常规石蜡切片方法进行洗涤、脱水、透明、渗蜡、包埋、切片、粘片、染色等操作程序,将封好的玻片在普通光学显微镜下观察并拍照.

2 结果与分析

2.1 幼虫取食观察


经饥饿处理后的菜粉蝶幼虫,开始对涂有 plpt 的叶片并没有选择.随着取食时间的延长,幼虫活动能力和取食量发生明显的变化.取食 6 h 以后,食量逐渐减退,至 24 h 观察,其食量大为降低,后期很少进食.前期试验证明,低龄幼虫 24 h 停止取食并开始死亡^[3],高龄幼虫 2 d 以后,绝大部分逐渐死亡,余下的幼虫也很难化蛹.感染前期,幼虫体色与对照无异,但到后期,虫体明显发黄而显得有病,行动迟缓.

2.2 中肠组织病理学观察

本试验是经口感染菜粉蝶幼虫. 一系列时间的病理切片观察发现: 对照的中肠围食膜完整, 肠壁细胞排列紧密(图 1-A). 处理 6 h 时, 中肠围食膜被破坏, 但能见到残存的围食膜片断, 并能见到少数细胞从基部伸长, 细胞顶端开始膨胀而进入肠腔(图 1-B). 处理 12 h 时, 围食膜几乎没有, 许多细胞伸长(图 1-C). 取食18h时, 从肠壁基部伸长的大量细胞, 端

部成囊状或棒状,部分囊状物与肠壁分开进入肠腔(图 1-D).从 24 h 时的切片可以看出,大量的细胞端部膨胀物,或许是细胞核,脱落进入肠腔(图 1-E).临近死亡的幼虫中肠组织切片观察结果为,肠壁组织

已被严重破坏,难以见到伸长的细胞和顶端囊状物,可能已脱落殆尽,其基层细胞仍然存留,肠的外形完整,但形成一些空腔,这些留下来的基层组织,很可能是已发生病变的另一种肠壁细胞(图 1-F).

A. 对照(400 倍), 中肠完整的围食膜(a)及排列紧密的肠壁细胞(b); B. 处理 6 h(400 倍), 中肠围食膜被破坏, 但能见到围食膜的片断(c), 还能见到从基部逐渐伸长的细胞(d), 细胞顶端开始膨胀成囊泡状(e); C. 处理 12 h(400 倍), 围食膜几乎没有(f), 许多细胞伸长, D. 处理 18 h(800 倍), 细胞端部膨胀脱落并进入肠腔(g); E. 处理 24 h(400 倍), 示大量细胞端部膨胀物(囊泡或核)脱落进入肠腔(h); F. 临近死亡的幼虫中肠切片(400 倍), 肠壁组织已被严重破坏, 基层细胞仍然存留, 但形成一些空腔(i)

- A. Contral. Shown the midgut of larva of *Pieris rapae* fed untreated leaves with plpt 400×. Note that the entire perit rophic membrane (a) and regular epithelium (b).
- B. The larvae treated after 6 h in diet, 400×. Note that the peritrophic membrane were destroyed, but the section of the peritrophic membrane (c), as well as some cells extending progressively from the bottom could be seen(d), the end of cells expanding(e) to form vesicles;
- C. The larvae treated after 12 h in the diet. $400 \times$. Note there was almost no peritrophic membrane (f), the some cells extending;
- D. The larvae treated after 18 h in diet, 800×. The cells of the midgut expanded on the end, and some vesicles dropped out into the gut lumen(g);
- E. The larvae treated after 24 h in diet $400 \times$. The large number of cells expanded on the ends the vesicles and nucleus fell off into the gut lumen(h);
- F. The dying larvae 400×. The epithelium were destroyed in the section of the midgut of the larvae and the basic cells remained, yet some empty lumens formed(i)

图 1 菜粉蝶中肠组织病理学观察结果

Fig. 1 The histopathological results of the midgut of Pieris rapae

3 结论与讨论

无色杆菌是生活在昆虫病原线虫肠腔中的一种 细菌. 随着线虫对昆虫的入侵, 该菌在寄主体内大量 繁殖,并释放毒素进入昆虫体腔,破坏昆虫的某些组 织或器官, 使寄主昆虫食欲减退, 取食量减少, 以致 停止取食,影响正常的生长发育而导致死亡,其毒理 机制类似于苏云金杆菌[8]. 无色杆菌的毒蛋白(plpt) 对几种鳞翅目昆虫具有经口和注射感染的双重毒 性^[3].本文研究的是经口感染后对菜粉蝶幼虫中肠 组织引起的病理变化,病变结果首先是供试幼虫中 肠围食膜被破坏; 随着取食时间的延长, 肠壁细胞层 的一些细胞伸长;细胞端部膨大成囊泡状,这些囊泡 被挤压进入肠腔;以后这些囊泡与细胞基部脱离,形 成圆形或椭圆形的泡状物进入肠腔,这些囊泡中,有 些可能是由细胞质组成,有些或许还带有细胞核;到 供试虫临近死亡时,中肠只留下一层细胞,胞间出现 一定的距离,并形成一些空囊,因此引起肠壁细胞的 死亡. 总之, 由于 plpt 的摄入, 供试昆虫的中肠组织 遭到了非常严重的破坏,说明 plpt 是作为一种胃毒 剂而对昆虫起毒杀作用.

这种毒蛋白的作用位点,很可能是昆虫中肠围食膜表层细胞上的某些受体,当毒蛋白与这些受体结合后,通过细胞的内化,进入胞质起作用,引起细胞的死亡;从试验中观察到的挤出型亚分裂(extrusion subdivision)、早期胞质突起起泡(cytoplasmic blebbing)、产生凋亡体(apoptosis bodies)等变化过程,类似于细胞凋亡的一般特征,即这种毒素引起了菜粉蝶幼虫肠壁细胞的凋亡^[9]。

据国外对无色杆菌毒素蛋白研究表明,这种毒蛋白含有4个组分,最大组分Tca对烟草天蛾幼虫有较高的生物活性,能引起烟草天蛾幼虫中肠细胞的病理变化,这一类毒蛋白对寄主的作用部位,可能只有中肠细胞是靶标,其作用机理尚不十分清楚^[5].进一步的研究,是对这些毒蛋白进行了基因编码序列

的测定,可望用于抗虫的转基因植物之中^[45].由于目前许多害虫对大量使用的苏云金杆菌产生不同程度的抗性,因此由苏云金杆菌毒蛋白研制成的许多转基因植物也受到不同程度的威胁,寻求和探索新的毒素基因源是众多害虫防治专家的目标,所以有学者认为,这种新的毒蛋白有可能打破苏云金杆菌的垄断,成为新的害虫防治武器^{6]}.如果从基因调控的深度对这种杆菌加以研究,将为我国害虫生物防治和转基因植物的研究提供新的毒蛋白基因源.

参考文献:

- [1] 王晓容, 李素春, 田世尧, 等. 泰山 1 号昆虫病原线虫对棉铃虫幼虫和蛹的致死效果[J]. 植物保护学报, 1995, 22(3): 227—230.
- [2] 李素春,丁文道,韩方胜.昆虫病原线虫泰山1号防治花生地蛴螬的方法及其效果[J].植物保护学报,1993,20(1):55-59.
- [3] 田世尧, 李素春, 王晓容, 等. 仲恺 1 号毒素对三种鳞翅目害虫的生物活性初报[J]. 仲恺农业技术学院学报, 1993, 6(2): 74-75.
- [4] BOWEN D, ROCHELFAU T, BLACKBURN M, et al. Insecticidal toxins from the bacterium *Photorhabdus luminesens*[J]. Science, 1998, 280, 2 129—2 132.
- [5] MICHAEL B. ELENA G. DAVID B. et al. A novel insecticidal toxin from *Photorhabdus luminesens*, toxin complex a (Tca), and its histopatyological effects on the midgat of *Manduca sexta* [J]. Applied and Environmental Microbiology, 1998, 64(8): 3 036—3 041.
- [6] PRAKASH C S. A new insecticidal protein to challenge the Bt monopoly[J]. Society for Invertebrate Pathology, 1998, 30(3): 46-47.
- [7] STRAUSS E. Possible new weapon for insect control[J]. Science 1998 280; 2 050.
- [8] SUTTER G R, RAUN E S. Histopathology of European corrborer larvae treated with bacillus thuningiensis [J]. J Invertebr Pathol 1967, (9): 90-103.
- [9] 王福安, 张学庸, 胡家露. 生物大分子的内化[M]. 北京. 科学出版社, 1995. 237—250.

Histopathological Effects of the Protein Toxin from Photorhabdus luminescens on the Midgut of Pieris rapae

TIAN Shi-yao¹, WANG Xiao-rong¹, PAN Jian-ping¹, LIU Wei², PANG Yi³

- (1. Pomology research institute of Guangdong Academy of Agricultural Sciences Guanzhou 510640. China;
- 2. South China Institute of Botany, Academia Sinica, Guangzhou 510650, China; 3. Zhongshan University, Guangzhou 510257, China)

Abstract: *Photorhabdus luminescens* is a bacterium which is mutualistic with entomophagous nematodes, and seretes the protein toxin following its release into the insect hemocoel. The protein toxin had high killing activities against a wide range of insects. After the insect took in the toxin, the changing of enzyme's internal function of the insects and the de-

struction of the organs resulted in the death of the insects. It was reported that the toxin ingested by the larvae of *Pieris* rapae orally brought about a series of pathological. The larvae ingesting the toxin at 6, 12, 18 and 24 h respectively, the cells of their midguts were destroyed progressively, some cells of midgut exterding, large cytoplasimic vesicles extruding on the end of the cells, and the vesicles and cell nuclei falling off epithelium into the gut lumen. The epithelia of the dying larvae were seriously destroyed, and only the basic cells remained. While some empty lumens formed, the normal growth of the larvae was affected by this pathological change. The results of the experiment showed *Photorhabdus luminescens* protein toxin (plpt) that could lead to serious pathogenesis in the midgut of the larvae.

Key words: Pieris rapae; Photorhabdus luminescens protein toxin; midgut; histopathology

【责任编辑 周志红】

(上接第35页)

Preliminary Study on the Control of *Coptotermes fomosanus* Shiraki by Imidacloprid

WEI Chang-hua, LU Chuan-chuan, YI Ye-hua (College of Forestry, South China Agric. Univ., Guangzhou 510642 China)

Abstract: The toxic efficacy and toxic soil barrier for termites (*Coptotames fomosanus* Shiraki) had been tested in laboratory and in forests respectively in Guangzhou. It is demonstrated that all termites were killed at the concentration of 0.05% (mass fraction) imidaeloprid within six days in laboratory test, The termites did not tunneled through the toxic soil treated with $0.05\% \sim 0.20\%$ (mass fraction) imidaeloprid in barrier experiment. In contrast, all the plots treated with 0.05% (mass fraction) chorpyrifos were tunneled and consumed heavily by termites. It is concluded from these results that imidaeloprid could be an excellent termiticide for protecting building from infestation by termites.

Key words: Coptotermes fomosanus Shiraki; imidacloprid; control

【责任编辑 周志红】