文章编号: 1001-411X(2000)04-0089-03

气相色谱法测定新鲜荔枝中"六六六"农药残留

陈玉芬, 王 平, 杨 军

(华南农业大学测试中心,广东广州510642)

摘要: 用大口径毛细管柱气相色谱/ 电子捕获器(GC/ ECD) 方法测定新鲜荔枝中" 六六六" 4 种异构体的农药残留 . 10 min 即可把 4 种异构体有效分离检测 . α - BHC, β - BHC, γ - BHC, δ - BHC 平均质量比为 47. $5 \sim 124~\mu_{\rm g}/{\rm kg}$ 时,标准偏差为 5. $22 \sim 11.8~\mu_{\rm g}/{\rm kg}$ 标样的添加回收率为 92. $0\% \sim 109\%$,标准曲线相关系数为 0. $994 \sim 0.999$ 。方法的最低检出限为 0. $144 \sim 0.373~\mu_{\rm g}/{\rm kg}$

关键词: 气相色谱法; 鲜荔枝; 农药残留

中图分类号: 0658

文献标识码: A

荔枝是色鲜味美的岭南佳果。由于对生长气候条件的特殊要求,产区仅限于华南热带亚热带地区。随着贮运技术的不断完善,近年来,我国新鲜荔枝出口量逐年增加,深受各国人民喜爱,在国际市场富有竞争力。为了使荔枝以健康无害的绿色食品顺利出口各国,除了在生产过程严格控制农药使用外,新鲜荔枝的农药残留检测,显得尤为重要。本文介绍新鲜荔枝中 α -BHC、 β -BHC、 γ -BHC、 δ -BHC 同时测定的方法。

1 材料与方法

1.1 仪器与试剂

日本岛津 GC-9A 气相色谱仪,配 C-R2AX 数据处理机,电子捕获检测器; HAAKE SWB 20 振荡仪; BUCHI 011 旋转蒸发仪; Multimoulinette 组织捣碎机;标样 α -BHC、 β -BHC、 γ -BHC、 δ -BHC(美国 Supelco 公司),丙酮(分析纯),石油醚(分析纯),无水 Na₂SO₄(分析纯),双蒸水,高纯 N₂.

1.2 标准溶液配制

准确称取 α -BHC、 β -BHC、 γ -BHC、 δ -BHC 4 种纯样各 10.00 mg,用丙酮溶解. 混合标样溶液 A 含 α -BHC 为 90.3 μ g/L, β -BHC 为 233 μ g/L, γ -BHC 为 222 μ g/L, δ -BHC 为 202 μ g/L

1.3 样品预处理

新鲜荔枝 1 kg^{5} , 去皮去核, 果肉用组织捣碎机捣碎, 均匀称取 10.00 g 荔枝样品于 100 mL 具塞三角瓶中, 加丙酮 15 mL 振荡 30 min, 过滤, 用丙酮 5 mL $\times 3$ 洗涤残渣, 合并丙酮提取液于 125 mL 分液漏斗中, 加入 20 mL 石油醚, 振摇 1 min, 加入 20 mL 20 g/L 无水 Na_2SO_4 水溶液, 振荡 1 min, 静置分层, 取上层石油醚, 用 10 g 无水 Na_2SO_4 干燥, 经旋转浓缩近干, 定

容 2.00 mL, 上机进样 1 LL

1.4 方法精密度及回收率的测定方法

取荔枝鲜样 1 kg, 去皮去核, 果肉用组织捣碎机捣碎, 重复均匀称取 5 份, 每份 10.00 g, 按 1.3 方法提取, 结果计算得方法精密度.

取荔枝鲜样 1 kg,去皮去核,果肉用组织捣碎机捣碎,重复均匀称取 6 份,每份 10.00 g,其中 1 份为空白,其他 5 份添加同量标样 BHC,按 1.3 方法提取,由测定结果计算方法的回收率.

2 结果

2.1 BHC的最佳色谱条件

经过优化,用 SE-54 $30 \text{ m} \times 0.53 \text{ mm}$ 柱,测定 4 种 BHC 的最佳条件是: 柱温 $200 \degree$,检测和气化温度 $300 \degree$,载气流速 20 mL/min,尾吹 30 mL/min,进样 1 ^{μ} L. 标准溶液的色谱分离情况见图 1a

- (1) 线性关系(标准工作曲线): 取混合标准溶液 A 0.20、0.40、0.60、0.80、1.00 mL 于 10.00 mL 刻度试管, 用丙酮定容至 10.00 mL, 摇匀, 上机, 进样 1 μ L.组分峰高(h) 与含量呈线性关系, 回归方程式, α -BHC: ρ =0.311+1.64 h, r=0.997; β -BHC: ρ =0.133+4.54 h, r=0.994; γ -BHC: ρ =1.78+2.42 h, r=0.996; δ -BHC: ρ =0.155+3.24 h, r=0.999.
- (2) 检测限: 以 2 倍噪音峰高的质量计算, "六六六"4 种异构体的检测限: α -BHC 为 0. 144 $\mu_{\rm g}/k_{\rm g}$, β -BHC 为 0. 373 $\mu_{\rm g}/k_{\rm g}$, γ -BHC 为 0. 355 $\mu_{\rm g}/k_{\rm g}$, δ -BHC 为 0. 323 $\mu_{\rm g}/k_{\rm g}$.
- 2.2 农药残留量的计算公式 用外标法计算^[2].

荔枝中
$$w(BHC) = \frac{h \times \rho_{\overline{h}} \times V}{h_{\overline{h}} \times m} \times 1000$$
 ,

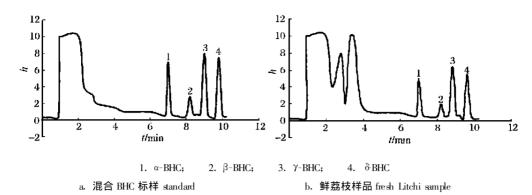


图 1 色谱图

Chromatograms of BHC Fig. 1

式中: h 为样品色谱峰高, Pk 为标样质量浓度 $(\mu_{\rm g/mL})$, V 为待测溶液体积 2.00 mL, $h_{\rm fd}$ 为样品色 谱峰高, m 为荔枝样品质量 10.00 g

2.3 色谱条件的优化

(1)色谱柱的选择: 农药残留分析一般多选用填 $\widehat{\text{RR}}^{[1]}$,因为填充柱可承受较大的进样量 $(1 \sim 5 \mu L)$, 对杂质的承受能力也大些,但柱子的分离能力较低. 鲜荔枝样品提取液,除了含微量的 BHC,杂质占绝大 多数, 且成分较多, 分别试用 w = 3%的 SE-30, 2 m \times 3 mm; w = 3%的 OV - 17, 1 m \times 3 mm 填充柱分离 检测, 发现杂质与 BHC 不能分离, 干扰组分检测. 所 以, 选用大口径毛细管柱 SE-54, 30 m×0, 53 mm, 液 膜厚度 1.0 μ m, 它的高柱效不但使 α-BHC、β-BHC、 γ-BHC、δBHC 4种异构体完全分离, 而且杂质峰也 完全分开, 见图 1b. 宽口(0.53 mm)厚液膜(1.0 μ m) 使柱子对样品的承载能力增大,10.00g鲜荔枝样品 经处理定容 2.00 mL, 每次进样 1.0 LL, 连续进样 100 次,未发现基线异常或柱效降低。

同时, 为了尽量减少样品杂质对色谱柱和检测 器的污染,采用了一系列相应措施:(a)分流进样,分 流比1:30(b)清洗气化室内垫管,样品中难挥发组 分积留在内垫管中,受热呈黑色粘稠物,用丙酮浸泡 15 min, 超声波清洗 5 min. (c)在 350 [℃]灼烧 ECD 检测 器,工作温度 300 ℃,能防止化合物污染检测器,使基 线平稳, 降低噪音, 最低检测限达 $0.1 \sim 0.3 \,\mu_{\rm g}/\,{\rm kg}$. 所 以,采用大口径毛细管柱,能有效地分离检测鲜荔枝 中"六六六"4种异构体的残留量.

(2)载气流速的选择: 载气 N₂ 流速对色谱分离 的影响见图 2 曲线, 实验表明, 载气流速在 20~40 mL/min 时, α-BHC 与 β-BHC, γ -BHC 与 δBHC 的 R(分离度)> 1.0,而 β -BHC与 γ -BHC在流速为 20 mL/min 时 R > 1.0,所以,载气的流速选择 20 mL/min,则 α-BHC、β-BHC、γ-BHC、δ-BHC 完全分

(3)柱温的选择:柱温变化对物质分离的影响见 图 3 曲线。柱温增大,能加快分析速度、实验表明。 最佳柱温 $200 \sim 205$ °C, 能使 4 种化合物有效分离 (R >1). 分析周期 10 min.

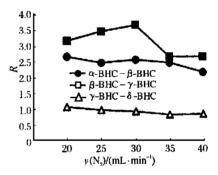


图 2 载气流速对分离度影响

Fig. 2 The effect of different N2 flow rate on the resolution of peaks

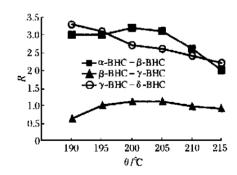


图 3 分离度与柱温关系

Fig. 3 The effect of different Col on the resolution of peaks

2.4 萃取条件的选择

用乙酸乙酯作萃取, BHC 的回收率约 30%, 即乙 酸乙酯提取 BHC 不完全. 而用丙酮, 一次即可完全 提取,但有糖杂质的干扰,用石油醚反萃取,并用20 g/L 无水 Na2SO4 水溶液 20 mL 洗涤, 即可去除糖分, BHC 的回收率达到要求.

方法的精密度和回收率

方法的精密度和回收率计算结果见表 1、2

2. 6 应用

妃子笑荔枝以及荔枝果园土样,结果见表3.

表 1 方法精密度

Tab. 1 Determination of precision

The Table 1						
 农药	\overline{w}	SD	CV			
pesticide	$/ (\mu_{\rm g} {\rm °kg}^{-1})$	$/ (\mu_{\rm g} \cdot {\rm kg}^{-1})$	/%			
α-ВНС	47. 5	5. 22	11. 00			
β−ВНС	124	8. 84	7.13			
у-ВНС	109	11. 8	10. 80			
& BHC	100	10. 9	10. 90			

表 2 方法回收率

Tab. 2 Results of recovery

农药	添加量 spike	d 实测值	回收率	SD	CV
	mass ratio	found $n=5$	results	~-	0,
pesticide	$/ (\mu_{\mathrm{g}} \circ \mathrm{kg}^{-1})$	$/ (\mu_{\rm g} \circ {\rm kg}^{-1})$	results / $(\mu_{\rm g} {\rm °kg}^{-1}) / \%$		
α-ВНС	21.3	20.8	97. 6	2.30	11. 10
β-ВНС	21.7	23. 6	109.0	3.81	16. 10
у-ВНС	19.6	20.8	106.0	1.92	9. 23
& BHC	23.8	21. 9	92. 0	1.00	4. 56

表 3 样品结果1)

Tab. 3 Experimental results

样 品 sample	$_{W}/\left(\mu_{\mathrm{g}}\circ\mathrm{kg}^{-1}\right)$			
样 品 sample	α-ВНС	β-ВНС	у-внс	∂ BHC
妃子笑 1 Feizixiao Litchi 1	nd.	0.4	nd.	nd.
黑叶 1 Heiye Litchi 1	nd.	2.0	nd.	nd.
黑叶 2 Heiye Litchi 2	nd.	nd.	nd.	nd.
妃子笑 2 Feizixiao Litchi 2	nd.	24.0	nd.	nd.
果园土样 soil of garden	nd.	47.0	nd.	nd.

¹⁾ nd. 未检出

3 结论

对新鲜荔枝所含 4 种"六六六"农药残留量的测定,用毛细管柱 SE-54 30 m× 0.53 mm 气相色谱/电子捕获器能有效地分离测定,样品的预处理简单,分析快速.

参考文献:

- [1] 中国预防医学科学院营养与食品卫生研究所. GB/T5009. 19—1996. 食品中六六六、滴滴涕残留量的测定[S]. 1997. 北京:中国标准出版社.
- [2] 邵俊杰. 食品分析大全. 第一卷[M]. 北京. 高等教育 出版社, 1997. 60, 300.

Determination of BHC Residues in Fresh Litchi by Gas Chromatography

CHENG Yu-fen, WANG Ping, YANG Jun

(Analysis and Instrumentation Centre, South China Agric. Univ., Guangzhou 510642, China)

Abstract: The α -BHC, β -BHC, γ -BHC, δ -BHC residues in fresh Litchi have been determined by wide bore capillary gas chromatography/electron capture detector (GC/ECD). The method is simple, fast and sensitive. When the average mass concentration of four BHC ranged from 47.5 ~ 124.0 μ g/kg, the standard deviation, the coefficient of variation, the recovery and the detection limits ranged from 5. 22 ~ 11.8 μ g/kg, 7.13% ~ 11.0%, 92.0% ~ 109% and 0.144 ~ 0.375 μ g/kg, respectively. The correlation coefficients of calibration curve were 0.994 ~ 0.999.

Key words: gas chromatography; fresh Litchi; BHC residues

【责任编辑 柴 焰】