文章编号: 1001-411X (2000) 04-0015-03

低温锻炼对冷藏芒果膜脂过氧化作用的影响

李雪萍1,张昭其1,戴宏芬2,季作梁1

(1 华南农业大学园艺系,广东 广州510642; 2 广东省农业科学院果树研究所,广东 广州510640)

摘要: 将紫花芒果(Mangifera indica L. cv. Zihua)置于 15℃低温中贮藏 7 d进行低温锻炼, 然后于 2℃中贮藏, 结果表 明. 低温锻炼处理提高了低温贮藏中芒果果皮 CAT和 SOD的活性, 延缓了 MDA 含量的增加和细胞膜透性的增大, 显著提高了芒果的抗冷害能力,延长了芒果低温贮藏的寿命.

关键词: 低温锻炼: 芒果: 冷藏: 膜脂过氧化 中图分类号: S609.3 文献标识码: A

芒果(Mangifera indica L.)是深受大众喜爱的名 贵水果,目前贮藏芒果最可行的方法为低温贮藏,但 因其为热带亚热带水果, 贮温较高易发生病害, 贮温 较低又易发生冷害,因此研究提高芒果果实抗冷害 能力的贮藏方法,对降低芒果果实贮藏温度,减轻低 温贮藏冷害,延长果实贮藏期有重要的理论与实践 意义, 将果实置于高于贮藏适温的温度下进行低温 锻炼, 可以提高某些果实对低温的耐性, 减轻低温贮 藏冷害,延长贮藏期,在荔枝、番木瓜、番茄、黄瓜等 果实的贮藏上有报道[1]. 冷害自由基伤害学说认为 低温下产生自由基, SOD、CAT 活性受抑制, 果实内自 由基不能及时清除,使膜脂过氧化,导致膜功能紊 刮,植物发生冷害,本实验以紫花芒果为材料,研究 低温锻炼对冷藏芒果果实膜脂过氧化作用的影响。 为果实抗冷害贮藏的研究和应用提供理论依据.

材料与方法 1

1.1 材料及处理

试验进行 2 a, 试验材料为紫花芒果 (Mangifera indica L. cv. Zihua), 采自广东省农科院果树研究所, 采收成熟度约为八成,采后立即运回实验室,用w=0.1%的漂白粉+w=0.1%的特克多水溶液洗果, 取 出置于阴凉处晾干,挑选均匀一致的无病、虫、伤果, 用塑料袋包装,放入纸箱,再置于 IL-82 型低温环境 箱(日本产)中贮藏.设2个处理:(1)对照处理,芒果 直接置于(2±0.5) [©]贮藏 29 d; (2)低温锻炼处理, 芒 果于(15±0.5) ℃贮藏7 d, 之后于(2±0.5) ℃贮藏22 d. 每处理3次重复.

1.2 方法

(1)低温贮藏后常温贮藏及冷害观察:贮藏 8、 15.21.28 d 后,每处理取4个果,用 w=0.1%的乙烯 利溶液浸果,置室温(20℃)下后熟,观察冷害症状及 后熟情况.

- (2)细胞膜透性的测定:参照李锦树的测定[3], 用DDS-11C型电导率仪测果皮渗出液电导值,用煮 沸前后电导值之比求出相对电导率代表果皮细胞膜 透性. 每处理测定3次.
- (3)MDA 含量测定: 参照刘祖祺方法测定[3],根 据丙二醛可与硫代巴比妥酸形成红棕色的红甲川。 采用分光光度计法,用 $\triangle E_{\text{mmol}}(532_{\text{nm}}-600_{\text{m}})=155$ 计算 MDA 含量、每处理测定 3 次、
- (4)SOD 活性测定:参照 Ginnapolitis 和 Ries 方 法^[4],利用 SOD 抑制氮蓝四唑(NBT)在萤光下的还 原作用, 3 mL 反应液中含有 1.3 mmol/L 核黄素、13 mmol/L 甲硫氨酸、63 4mol/L NBT、0.05 mL pH7.8 磷 酸缓冲液,加入适量酶液后在 4 000 Lx 光下照射 15 min, 然后在 560 nm 下测定光密度, 以缓冲液代替酶 液作空白, 酶活性单位采用抑制 NBT 光化还原 50% 为一个酶活性单位数表示,酶活力以单位质量蛋白 质所含酶活性单位数计,每处理测定3次.
- (5)CAT 活性测定: 削取 0.5 mm 厚果皮切碎,以 15 加入150 mmol/L pH7. 0磷酸缓冲液破碎匀浆,匀 浆液在 4 ℃、15 000 r/min 下离心 10 min, 上清液用干 酶活性测定.测定方法参照 Chance 和 Machle 方 法^[5], 3 mL 反应液中有 2.95 mL 用 150 mmol/L pH7.0 磷酸缓冲液配制的 15 mmol/L H₂O₂ + 0.05 mL 酶液, 测定 H_2O_2 减少时, D_{240} 值的变化, 以每分钟 D_{240} 值下 降 0.001 为 1 个酶活性单位(u), 酶活力以单位质量 蛋白质所含酶活性单位数计, 每处理测定 3次.
- (6)蛋白质含量测定: 参照 Bradford 方法⁶, 用考 马斯亮兰 G-250 染色法测定.

2 结果与分析

2.1 低温锻炼对芒果果实低温贮藏效果的影响

芒果于 2 ℃中贮藏 8 d 时,果皮出现少量水渍状斑点,催熟时,果肉可转黄变软,但果皮叶绿素褪色不完全,果面有褐色斑点,表明 2 ℃贮藏温度果已发生轻微冷害;贮藏 15 d 时取果催熟,整果果皮呈烫伤状,果肉青白色,不能转黄,没有芒果香味,表明芒果在2 ℃中贮藏 15 d 已严重冷害.低温锻炼处理果实在贮藏 15 d 时催熟能正常后熟; 21 d 时果皮出现水渍状斑点,催熟后状态与 2 ℃贮藏温度果贮藏 8 d 时催熟状态相似,表明已发生轻微冷害; 28 d 时才出现严重冷害.可见低温锻炼能够延缓芒果低温贮藏时冷害的发生.

2.2 低温锻炼对细胞膜透性的影响

由图 1 可见,随冷害的发展,2 [℃]贮藏果果皮细胞膜透性增加,而低温锻炼后移至 2 [℃]贮藏的芒果,贮藏期间细胞膜透性增加比较缓慢,说明低温锻炼一定程度上减轻了低温冷害对细胞膜的伤害。

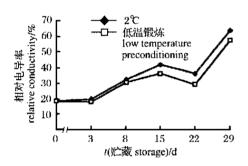


图 1 低温锻炼对细胞膜透性的影响

Fig. 1 The effect of low temperature preconditioning on membrane permeability

2.3 低温锻炼对 MDA 含量的影响

由图 2 可见, 随冷害发展, 2 [©]贮藏果果皮 MDA 含量逐渐增加, 低温锻炼处理果实的果皮 MDA 含量在低温锻炼后下降, 随贮藏期延长又逐渐接近 2 [©]贮藏果.

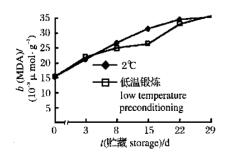


图 2 低温锻炼对芒果果皮 MDA 含量的影响

Fig. 2 The effect of low temperature preconditioning on MDA contents in mango fresh peel ?1994-2015 China Academic Journal Electronic Public

2.4 低温锻炼对 SOD 活性和 CAT 活性的影响

由图 3 可见,2 $^{\circ}$ 贮藏果果皮 SOD 活性 0~8 d 下降幅度较大,之后变化 平缓,保持较低水平;低温锻炼处理在 3~15 d 时较大幅度地提高了 SOD 活性,而后期 SOD 活性下降 至接近 2 $^{\circ}$ 贮藏果 $^{\circ}$ 2 $^{\circ}$ 贮藏果 CAT 活性在贮藏前、中期下降迅速,然后活性一直较低;低温锻炼处理明显提高了果皮 CAT 的活性,一直到贮藏后期 CAT 活性仍高于 2 $^{\circ}$ 贮藏果 . 低温锻炼处理后果皮 SOD 及 CAT 活性都出现了一个高峰,这有利于清除自由基,维持细胞膜的稳定性,延缓果实冷害的发生 .

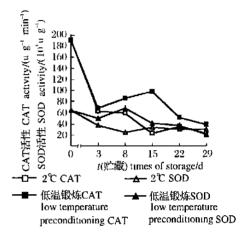


图 3 低温锻炼对 CAT 和 SOD 活性的影响

Fig. 3 The effect of low temperature preconditioning on CAT and SOD activities

3 讨论

本试验中,以2[°]贮藏果为对照,可见低温锻炼延迟了2[°]贮藏芒果冷害的发生,减轻了低温贮藏期间果实的冷害症状,从而延长了低温贮藏芒果的贮藏寿命,说明低温锻炼是一种有效的抗冷害措施.

低温逆境对 CAT、SOD 等保护酶系统的活性有抑制作用,增加植物体内自由基,自由基积累使膜脂过氧化,引起膜损伤,导致冷害发生.将果实置于高于贮藏适温的温度下进行锻炼,可增强抗冷性,在荔枝、番木瓜、番茄、黄瓜等贮藏中已得到证实.范华等¹¹指出:低温锻炼提高黄瓜果实耐冷性的同时,膜泄漏减少;低温锻炼减轻了西葫芦南瓜冷害,Wang¹⁷认为该处理样抗冷性的增强与 SOD、CAT、维生素 C过氧化物酶、谷胱甘肽还原酶活性的上升有关,说明冷害适应性与自由基清除酶活性变化有关.从本试验可见:2℃贮藏果贮藏期间 CAT 和 SOD 活性受到抑制,使芒果组织自由基清除能力下降,果实过早出现冷害;而低温锻炼处理提高了芒果果实低温贮藏期间 SOD 和 CAT 的活性,减缓了 MDA 和膜透性的增

加,延迟冷害的发生.

陈贻竹等⁸ 认为:由于 CAT 主要存在于过氧化物体内,低温使其膜损伤,从而导致 CAT 活性下降. Patterson 等⁹ 则认为低温下存在一种酶抑制剂,可以抑制 CAT 的活性. 赵华等¹⁹ 指出:西瓜在冷害温度下,SOD 活性随贮存时间的延长而下降;在非冷害温度下,其活性则随贮存时间延长而增加. 因此可以推测:低温锻炼处理,由于果实预先置于高于冷藏适温的温度下贮藏,有利于稳定膜结构,因而提高了CAT 的活性;或者是避免了低温下对 CAT 和 SOD 活性的抑制;从而减轻了低温贮藏期间果实的膜脂过氧化程度.

低温锻炼作为一种有效的抗冷害措施,对其抗冷害机理进行多方面多角度的研究,有利于从根本上揭示果实冷害发生及抗冷性机制,为果实抗冷害贮藏的研究和应用提供理论依据.对拟南芥菜、油梨等植物材料的研究显示,低温锻炼能使植物的基因表达发生改变,并有新的蛋白质合成^[1].这为未来提供了进一步研究的方向。

参考文献:

- [1] 陆旺金, 张昭其, 季作梁. 热带及亚热带低温贮藏及御冷技术[1]. 植物生理学通讯, 1999, 35(2): 158—163.
- [2] 李锦树, 宓容钦. 植物生理学实验手册[M]. 上海: 上海

- 科学技术出版社, 1986. 67-70.
- [3] 刘祖祺,张石城. 植物抗性生理学[M]. 北京:中国农业 出版社,1994. 371—372
- [4] GIANNOPOLITIS C N, RIES S K. Superoxide dismutase II: Purification and quantitative relationship with water-soluble protein in seeding J . Plant Physiol, 1979, 59: 315—318.
- [5] CHANCE B, MECHLY A C. Assay of catalase and peroxidase[M] Methods Enzymol 1955, 2: 755—764.
- [6] BRADFORD M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem. 1976, 72: 248—254.
- [7] WANG C.Y. Relationship between free radical scavengers enzymes and chilling to tolerance in Zucchini Squash[J]. Acta Horticulturae, 1995, 398; 205—211.
- [8] 陈贻竹,帕特森 B. 低温对植物叶片中超氧物歧化酶、过氧化氢酶和过氧化氢水平的影响 JJ. 植物生理学报、1988,14(4):323—328.
- [9] PATTERSON B D. PAYNE L S. CHEN Y Z. et al. An inhibiter of catalase induced by cold in chilling sensitive [J]. Plant Physiol. 1984, 76: 1 041—1 018.
- [10] 赵 华, 胡 鸿, 吴肇志. 西瓜冷害与贮藏温度和贮藏期的关系[J]. 园艺学报, 1992, 19(2): 140—146.
- [11] 叶志彪, G RIE RSON D. 鳄梨冷藏过程中体外转译和基因表达的研究[1]. 植物学报, 1993, 35(增刊): 50—55.

Effects of Low Temperature Preconditioning on Membrane-Lipid Peroxidation During Cold Storage of Mango Fruits

LI Xue-ping¹, ZHANG Zhao-qi¹, DAI Hong-fen², JI Zuo-liang¹
(1 Dept. of Horticulture, South China Agric. Univ., Guangzhou 510642, China;

2 Institute of Pomology, Guangdong Academy of Agricultural Science, Guangzhou 510640, China)

Abstract: The reserch was done on the changes of SOD, CAT, MDA and the membrane permeability of mangoes (*Mangifera indica* L. cv. Zhihua) storaged at (2 ± 0.5) °C after being storaged for seven days at 15 °C. The result indicated that the treatment of low temperature preconditioning promoted the increase of the SOD and CAT activities, delayed the increase of the MDA content and the membrane permeability, declined the membrane-lipid peroxidation.

Key words: low temperature preconditioning; mango; cold storage; membrane permeability

[责任编辑 柴 焰]