文章编号: 1001-411X (2001) 02-0076-03

# 组合机构在插秧机分插机构设计中的应用

李德威1、温兆麟2

(1 华南农业大学工程技术学院,广东广州510642; 2 广州航海高等专科学校轮机系,广东广州510725)

摘要:传统的插秧机分插机构的设计选用单一的机构,由于其性能的限制,在设计时只能根据秧爪运动轨迹、取秧与插秧角度来设计插秧机分插机构.但分插机构的设计还应该考虑在各关键位置及各工作段时秧爪尖的运动速度.只有同时考虑这两方面的需要,才能设计出性能良好的分插机构.文章采用空间 RSSR 机构与平面连杆机构的组合机构来实现这一目的.

关键词: 空间机构; 平面机构; 插秧机; 分插机构; 机构综合中图分类号: TH112 文献标识码: A

水稻是我国主要粮食作物之一,在我国粮食生产中有着举足轻重的地位.实现水稻插秧机械化是我国水稻生产发展的必然趋势.插秧机的核心为其分插机构.因此,要实现水稻生产机械化,扩大机插面积,对插秧机分插机构的研究是一项很有意义的工作.

传统的插秧机分插机构的设计选用单一的机构,由于其性能的限制,在设计时只能根据秧爪运动轨迹、取秧与插秧角度来设计插秧机分插机构.如果要进一步提高插秧时的性能,例如满足秧爪在不同工作位置的速度要求,则显得无能为力.为了改善插秧机的性能,本文将探讨采用组合机构来实现这一目的.所采用的组合机构由平面连杆机构与空间RSSR机构串联组合而成.

### 1 设计原理与方法

#### 1.1 插秧机需保证的参数要求

插秧轨迹可分为:取秧工作段、分秧段、运秧段、插秧工作段与回程段5个阶段.轨迹中存在以下几个关键点:进入秧门点、取秧点、入土点、出土点与轨迹的最深点等.

根据有关资料<sup>[1]</sup> 所提供的数据,选取上述各关键点 的 坐 标 分 别 为  $A_1$  (- 181. 60, 40. 80),  $B_1$  (- 211. 90, 29. 50),  $C_1$  (- 182. 50, - 142. 00),  $D_1$  (- 135. 00, - 142. 00)与  $E_1$  (- 150. 00, - 165. 20). 以上单位均为 mm. 在上述各位置栽植臂与水平线所成角度分别为  $\alpha_{A1}=26.80^\circ$ ,  $\alpha_{B1}=29.90^\circ$ ,  $\alpha_{C1}=66.80^\circ$ ,  $\alpha_{D1}=65.60^\circ$ 与  $\alpha_{E1}=71.10^\circ$ . 根据资料<sup>[2]</sup> 所提供的数据,同时为提高单位时间插次,以便提高效率,在运秧段与回程段所取秧爪尖点的速度应较高,

故选定通过上述各关键点时秧爪尖点的相对速度分别为  $V_{A1}=1$ . 24 m/s,  $V_{B1}=2$ . 29 m/s,  $V_{C1}=1$ . 40 m/s,  $V_{D1}=1$ . 57 m/s,  $V_{E1}=0$ . 47 m/s.

### 1.2 实现通过关键位置的平面连杆机构综合

如图 1 表示一平面连杆机构在位置 1( 实线) 与任一其他位置 j( 虚线) 的 2 个不同位置.

从图 1 可得方程: 
$$Z_1(e^{i\beta_j}-1)+Z_2(e^{i\alpha_j}-1)=R_j-R_1$$
. (1)

当给定运动平面 5 个位置时, 此时未知数为  $Z_1$ 、  $Z_2$  与  $\beta_j$  (j=2,3,4,5) 等 8 个, 由方程(1) 可得 8 个方程, 未知数均可由方程组解出.

据此,解出平面机构的铰接点为:与机架固结铰接点O(-0.74,-0.41),B(94.13,87.32)和活动铰接点A(-16.69,31.00),C(68.51,-0.06).以上单位均为mm.该机构为曲柄摇杆机构.

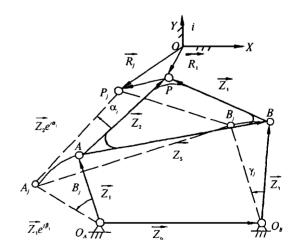



图 1 通过 关键位置的平面机构的综合

Fig. 1 Synthesis of planar mechanism to pass key positions

#### 1.3 空间 RSSR 机构的输入输出关系

如图 2所示选取直角坐标系 XOY,坐标原点为曲柄转动中心 O点,以通过 O点的水平线为 X 轴.

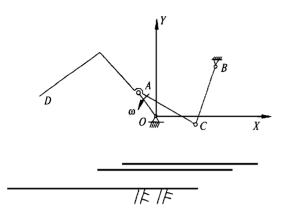



图 2 平面机构的运动分析

Fig. 2 Motion analysis on planer mechanism

设曲柄转角与角速度分别为  $\theta_1$ 、 $\omega_1$ ,连杆的转角与角速度分别为  $\theta_2$ 、 $\omega_2$ . 根据有关资料,取  $L_{AD}=196$  mm,则积爪尖点 D 的位移方程式为:

$$\begin{cases} X_D = L_{OA}\cos\theta_1 + L_{AD}\cos\theta_2 \\ Y_D = L_{OA}\sin\theta_1 + L_{AD}\sin\theta_2 \end{cases}$$

#### D 点的速度方程式为:

$$\left\{egin{array}{l} V_{DX} = & -L_{OA}\omega_{1}\sin heta_{1} - L_{AD}\omega_{2}\sin heta_{2} \ V_{DY} = L_{OA}\omega_{1}\cos heta_{1} + L_{AD}\omega_{2}\cos heta_{2} \end{array}
ight.$$

经计算得到与各关键点相对应的主动件的转角 分别为66°、117°、220°、263°、312°.

设在取秧分秧工作段、运秧段、入土点到轨迹最深点、轨迹最深点至出土点及回程段曲柄所转过的角度分别为  $\theta_i^*$  (i=1,2,...,5),则  $\theta_1^*=51^\circ$ , $\theta_2^*=103^\circ$ , $\theta_3^*=43^\circ$ , $\theta_4^*=49^\circ$ , $\theta_5^*=114^\circ$ .

根据已给定在各关键点时秧爪尖点的相对速度,可得相应的曲柄转速分别为 200、292、166、266、136 r/min.

本文根据以下两点选定各段的平均速度: (1) 各段的平均速度介于两端点的速度之间,与两端点的平均速度相近; (2) 满足插秧的工作要求,在取秧段速度适中,入土时速度较快,到轨迹最深处时速度较慢,在运秧段与回程段的速度较快. 依此,选定在各工作段的曲柄平均转速分别为 252、257、119、201、272 r/min.

从而可得进入秧门点、取秧点、入土点、轨迹的最深点、出土点和第二次进入秧门点的时间分别为 $0.5,620\times10^{-4}.1.673\times10^{-3}.2,677\times10^{-3}.3.354\times10^{-3}$ 

 $10^{-3}$  和 4.  $520 \times 10^{-3}$  min.

由 曲 柄转 一圈 所用的 时间 为  $4.520 \times 10^{-3}$  min(0.2712s) 得出曲柄的平均转速 n=221 r/min.

作出经过各关键点时转速与时间的关系图(因篇幅所限,略). 从而可设此函数为:  $Y = a + b \sin(2085.128t)$ . 根据已知参数可得平面曲柄摇杆机构曲柄转速和时间关系的回归直线方程:

 $Y = 200.1901 + 99.9708 \sin(2.085.128t)$ , (2) 式中 Y 为转速,单位为 r/min; t 为时间,单位为 min.

方程(2) 的线性回归相关系数为: r = 0.999 T/>  $r_{0.01}(4) = 0.917.2$ ,极显著.

建立曲柄转速与时间的函数关系可实现平滑过渡,避免冲击.

方程(2)可变形为:

 $Y = 1201.1406 + 599.8248 \sin(1991.1504t), (3)$ 式中 Y 的单位为( $^{\circ}$ )/s, t 的单位为 s.

设 θ<sub>1</sub> 为平面曲柄摇杆机构中曲柄的转角,则有:

$$\theta_1 = \int_0^t Y dt = 1 \ 201. \ 140 \ 6t -$$

0. 
$$301 2\cos(1 991.150 4t) + 0.301 2.$$
 (4)

设空间 RSSR 机构中主动件的转角与角速度分别为  $\theta_2$  与  $\overline{\omega}_2$ ,则有:

$$\bar{\omega}_2 = \frac{360^{\circ}}{0.271.2s} = 1.327.433.6^{\circ}/s,$$
 (5)

$$t = \frac{\theta_2}{\overline{\omega}_2},\tag{6}$$

型 是空间 RSSR 机构的输入转角, θ<sub>1</sub> 为输出转角.

将式(5)与式(6)代入方程(4)中得到空间RSSR 机构的输入输出关系式:

$$\theta_1 = 0.9049\theta_2 + 0.3012 - 0.3012\cos(1.5\theta_2)$$
. (7)

所设计的空间 RSSR 机构需满足此输入输出关系式。

#### 1.4 空间 RSSR 机构的综合

参见文献<sup>3</sup> 所介绍的方法进行空间 *RSSR* 机构的综合. 该方法将非线性方程组转化为线性方程组来求解,降低了计算的难度.

## 2 数值结果

以下将对 (7) 式进行空间机构的函数综合. 定义  $0^{\circ} \le \theta_2 \le 360^{\circ}$ , 主动件转角范围为  $0^{\circ} \le \theta_2 \le 360^{\circ}$ , 从动件转角范围为  $0^{\circ} \le \theta_1 \le 360^{\circ}$ , 要求精确点的数目 n=6.

按照戚贝谢夫插值法确定精确点的位置,可得到表1所示数据。 House: All rights reserved. http://www.cnki.net

表 1 函数综合表
Tab 1 The table of function synthesis

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                 |   |           |            |               |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------|------------|---------------|---------------|
| 2 52. 720 8 47. 951 2 52. 720 8 52. 895 0<br>3 133. 412 6 121. 309 1 133. 412 6 133. 816 1<br>4 226. 587 4 205. 057 3 226. 587 4 226. 198 7<br>5 307. 279 2 278. 415 2 307. 279 2 307. 119 8          | i | $X_i$     | $Y_i$      | $\theta_{2i}$ | $\theta_{1i}$ |
| 3     133. 412 6     121. 309 1     133. 412 6     133. 816 1       4     226. 587 4     205. 057 3     226. 587 4     226. 198 7       5     307. 279 2     278. 415 2     307. 279 2     307. 119 8 | 1 | 6. 133 4  | 5. 554 0   | 6. 133 4      | 6. 126 6      |
| 4 226. 587 4 205. 057 3 226. 587 4 226. 198 7 5 307. 279 2 278. 415 2 307. 279 2 307. 119 8                                                                                                           | 2 | 52.720 8  | 47. 951 2  | 52.720 8      | 52.895 0      |
| 5 307. 279 2 278. 415 2 307. 279 2 307. 119 8                                                                                                                                                         | 3 | 133.412 6 | 121. 309 1 | 133. 412 6    | 133.816 1     |
|                                                                                                                                                                                                       | 4 | 226.5874  | 205. 057 3 | 226, 587 4    | 226. 198 7    |
| 6 353. 866 6 320. 812 4 353. 866 6 353. 888 2                                                                                                                                                         | 5 | 307.279 2 | 278. 415 2 | 307. 279 2    | 307.1198      |
|                                                                                                                                                                                                       | 6 | 353.8666  | 320. 812 4 | 353. 866 6    | 353.888 2     |

设  $\alpha_1 = 50^\circ$ ,  $\theta_{10} = 0$ ,  $h_1 = 1$ , 则按照空间 RSSR 机构的综合方法可得到空间机构的其余尺寸参数为:  $h_2 = 0$ . 33,  $s_1 = 5$ . 62, L = 4. 94,  $h_4 = 0$ . 09,  $s_4 = 1$ . 30 与  $\theta_{20} = 35$ . 89°. 将此 RSSR 机构与前面所得到的平面机构串联成组合机构,用作插秧机的分插机构,如图 3 所示.

### 3 结论

- 1)分插机构的设计应该同时考虑秧爪运动轨迹、取秧与插秧角度以及秧爪的运动速度两方面的需要,才能设计出性能良好的分插机构.
- 2)既要满足刚体导引要求,又要满足在各个位置及各工作段的速度要求,靠单一的平面曲柄摇杆机构来完成是不可能的.本文采用空间机构与平面机构的组合机构来达到这些目的,结果满意.

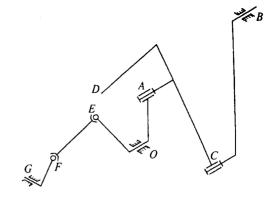



图 3 组合机构用作插秧机的分插机构

Fig. 3 Combined mechanisms to be used for transplanting in rice transplanter

3)以上所有工作均通过计算机编程来实现,程序的通用性强,可缩短设计周期,提高设计精度.

#### 参考文献:

- [1] 李宝筏.日本插秧机分插机构平衡问题的分析[J].农业情报资料,1982。(2):13-22
- [2] 王清媛, 刘德仁, 张淑珍, 等. 连杆式水稻插秧机分插机构的分析与综合[J]. 吉林工业大学学报, 1985, (3): 70—91
- [3] 温兆麟. 组合机构在插秧机分插机构设计中的应用 [D]. 广州. 华南农业大学工程技术学院 2000

# Application of Combined Mechanisms on Design of Rice Transplanter

LI De-wei<sup>1</sup>, WEN Zhao-lin<sup>2</sup>

(1 College of Polytechnic, South China Agric. Univ., Guangzhou 510642, China;

2 Dept. of Marine Engine, Guangzhou Maritime College, Guangzhou 510725, China)

**Abstract:** The traditional design of the transplanting mechanism of rice transplanters utilized only a single mechanism, which satisfied only requirements for the assigned movement locus of the seedling claw and the angles of rice pulling and transplanting. To design a good transplanting mechanism, the movement locus of the seedling claw, the angles of rice pulling and transplanting, as well as the working speeds of the seedling claw in various key positions and working stages should all be taken into consideration. Therefore, this paper endeavours to prove the feasibility of using a combination of mechanisms to improve the performance of rice transplanters.

Key words: spatial mechanism; planar mechanism; rice transplanter; transplanting mechanism; mechanism synthesis

【责任编辑 柴 焰】