文章编号: 1001-411X (2001) 03-0060-04

禽类血管活性肠肽与乙肝病毒核心抗原融合基因的构建

施振旦,黄运茂,曹永长,毕英佐(华南农业大学动物科学系,广东广州510642)

摘要: 在制备以禽类血管活性肠肽(VIP) 为基础的基因工程疫苗工作中, 选择乙肝病毒核心抗原(HBcAg) 作为载体来提高鹅 VIP 的免疫原性. 首先将克隆于鹅 VIP cDNA 和 HBc 基因第 1 至 435 bp 的序列片段先后插入到质粒 pRSET A 的 BamH I \ EcoR I 和 Nhe I \ BamH I 克隆位点之间, 构建成 VIP 序列位于 HBc 序列之后的 VIP 融合基因的重组质粒 pHBc—VIP. 其次将 HBc 第 1 至 225 bp 序列的扩增片段和 HBc 第 244 bp 之后包括 VIP 的序列经扩增、 EcoR I 酶切、连接、再扩增的片段先后插入到质粒 pBSKS+/—的 BamH I \ Pst I 和 Pst I \ Hind III 克隆位点,构建成 VIP 插入到 HBc 基因中间(HB cAg 的第 75 和 82 位氨基酸之间) 融合基因的重组质粒 pVIP-HBc.

关键词: 血管活性肠肽; 乙肝病毒核心抗原; 融合基因中图分类号: 0784, 0786 文献标识码: A

禽类就巢发生和维持是在催乳素分泌升高达一 定水平后进行的,催乳素的释放激素血管活性肠肽 (vasoactive intestinal polypeptide, VIP) 也因此与禽类就 巢有密切的关系,对家鸡和火鸡主动免疫禽类 VIP 可抑制就巢发生并提高产蛋[1~3] 即证实了这一作 用. 这一发现也提示可通过主动免疫 VIP 来抑制禽 类就巢并提高产蛋繁殖性能. 由于化学合成 VIP 价 格昂贵,通过基因工程生产 VIP 重组蛋白作为免疫 原或疫苗是一种有希望的选择. VIP 成熟激素是一 个仅28个氨基酸的多肽,该小分子在动物体内缺乏 免疫原性,必须与一个大分子蛋白载体结合才能表 达免疫原性并激发免疫反应, 在构建 VIP 重组蛋白 过程中, 笔者选择人乙肝病毒核心抗原(HBcAg) 作 为大蛋白载体. 研究表明 HBcAg 在原核和真核表达 系统中都能自动组装为颗粒,该颗粒易于纯化,能够 分解后再聚合. HBcAg 颗粒具有很强的免疫原性,能 以T细胞依赖和非依赖方式产生抗体. 利用 HBcAg 作为载体携带外源小肽后仍能形成颗粒,将外源小 肽插入到HBcAg的N端、C端和中部的第 $75 \sim 83$ 位 氨基酸间刺突(loop)区,可显著提高外源小肽的免疫 原性,而在中部刺突区插入所形成的融合 HBcAg 颗 粒则能使外源小肽突出在颗粒的表面从而最大限度 地提高小肽的免疫原性^[4~7]. 本文介绍制备 VIP 重 组蛋白的前期工作,即 VIP 和 HBcAg 编码 DNA 序列

的重组,或 VIP-HBc 融合基因的构建.

1 材料与方法

1.1 材料

禽类血管活性肠肽(VIP) cDNA 序列为香港大学 邹国昌博士克隆的鹅 VIP cDNA,此序列编码一含 28 个氨基酸残基的肽,克隆于 pBSKS +/- 质粒的 BamH I 和 EcoR I 位点之间形成质粒 pBSKS-VIP. HBcAg cDNA 序列来源于 pHBV 130 质粒^[7],编码 1 个含有 168 氨基酸残基的蛋白. 受体菌 XL-1 Blue,克隆质粒 pBSKS +/- 和表达质粒 pRSET-A 均由华南农业大学动物科学系家禽研究室保存.

各种反应内切酶、连接酶、小牛肠碱性磷酸酶、 Pfu DNA 聚合酶、dNTP、IPTG 和 X-gal 等均购于华美 生物工程公司. 所用PCR 引物都由上海生工公司合成.

1.2 重组基因构建和克隆方法(图1)

(1)VIP 序列在 HBcAg 序列 3 [°] 端的融合: 这一设计期望使 VIP 位于 HBcAg 的羧基端. 将质粒 pB-SKS-VIP 经 *BamH* I \ *EcoR* I 双酶切后回收一长约为 93 bp 的 VIP 编码序列, 克隆入质粒 pRSET-A 的 *BamH* I \ *EcoR* I 的克隆位点,构建成质粒 pRSET-VIP.

杨莉[8] 等的研究表明,完整 HBcAg 序列中富含

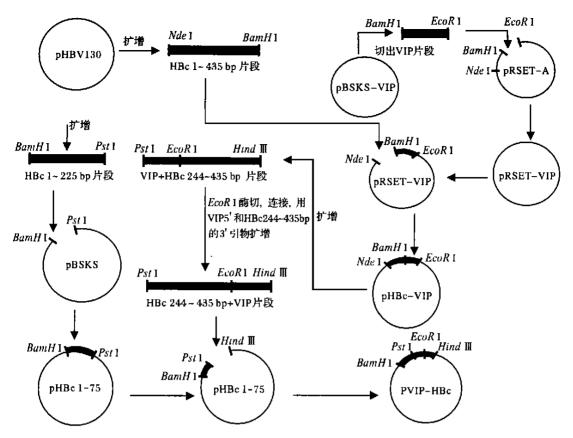


图 1 构建质粒 pHBc-VIP 和 pVIP-HBc 的流程图

Fig. 1 Flow chart for constructing recombinant plasmid pHBc-VIP and pVIP-HBc

精氨酸的 3' 端尾部不影响 HBcAg 的空间构形和免疫原性呈现,因此设计1对引物 (HBc)来扩增编码HBcAg 蛋白第 1~145 位氨基酸的序列. 5'端引物 (5'—GAGCTAGCATGACATTGACCCTTAT—3')含1个 Nhe I 位点及 HBcAg cDNA 第 1~18 位碱基,3'端引物含1个 BamH I 位点及 HBcAg cDNA 第 413 位碱基至第 435 位碱基的反向互补序列(5'—TA GGATCC CTCCGGAAGCGTTGATAGGA—3'). 用 pHBV130 质粒作为模板,扩增出 451 bp 左右的特异性片段 HBc经双酶切克隆于质粒 pRSET-VIP 的 Nhe I \ BamH I 克隆位点形成质粒 pHBc-VIP.

(2) VIP 序列在 HBcAg 序列中间的融合:这一设计期望使 VIP 位于 HBcAg 第 75~82 位氨基酸间.设计第 1 对(HBc—1—75)引物,5' 端引物(5'—AAG—GATCCATGGACATTGACCCTTAT—3')含 1 个 BamH I 位点和 HBcAg cDNA 第 1~18 位碱基,3' 端引物(5'—ATCTGCAGATTAGTACCCACCCAGGTAG—3')含 1 个 Pst I 位点和 HBcAg cDNA 第 205~225 位碱基的反向互补序列.用 pHBV130 质粒作为模板,扩增出长约 241 bp 特异性片段 HBc—1—75 经双酶切克隆入质粒 pBSKS 的 BamH I \Pst I 克隆位点构建成质粒 pHBc1—754—2016 China Academic Journal Electronic Publish

设计第 2 对 (VIP) 引物, 5' 端引物 (5' — CTCT-GCAGCACTCTGATGCTGTCTTC — 3') 含 $1 \land Pst$ I 位点和 VIP cDNA 第 $1 \sim 18$ 位碱基, 3'端引物 (5' — CC_GAATTC TCCAGTTAA AACTGAGTT — 3') 含 $1 \land EcoR$ I 位点和 VIP cDNA 第 $70 \sim 84$ 位碱基的反向互补序列及之后的终止码 (TGA) 点突变反向互补序列 (TCC). 用 pHBe-VIP 质粒作为模板扩增出的 103 bp 特异性片段经双酶 切后不易将 VIP 片段直接克隆入质粒 pHBe1—75, 这可能是由质粒 pHBe1—75 中 Pst I 和 EcoR I 两切点相接排列造成,于是考虑将 VIP 与 HBcAg cDNA 第 $244 \sim 435$ 位 碱基片段 (HBc—82—145)直接连接后再克隆.

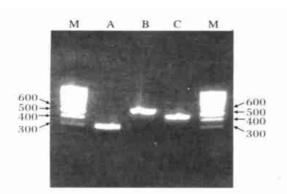
第 3 对 (HBc - 82 - 145) 引物, 5' 端引物(5' - CTGAATTCAGGGACCTAGTAGTCAGT - 3') 含切点 EcoR I和 HBcAg cDNA 第 244 ~ 261 位碱基, 3'端引物(5' - GTAAGCTTCTACTCCGGAAGCGTTGATAGG - 3')含一个 Hind III 位点及紧连的终止密码子反向互补序列(CTA)和 HBcAg cDNA 第 413 ~ 435 位碱基的反向互补序列. 用 pHBc-VIP 质粒作为模板扩增出一207 bp 特异片段.

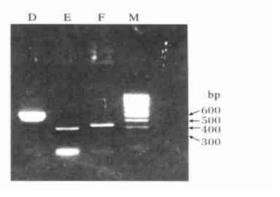
以 pHBc-VIP 质粒作为模板用 HBc — 82— 145 *5*' 端引物和 VIP 3'端引物特异性扩增出— 300 bp 片

(3)重组质粒的筛选:将所构建的重组质粒 pB-SKS-VIP、pHBe-VIP、pHBe1 — 75 和 pVIP-HBe 转化入 XL-Blue 受体菌,于 LA 琼脂培育基上经 ITPG 和 X-gal 显色后选择阳性克隆菌落.阳性克隆菌培养后用菌液或抽提质粒作模板用各对引物进行扩增,根据特异性扩增产物长度确认质粒构建正确的菌落,并对所用酶切位点进行酶切检验阅读框架的准确性.

2 结果和讨论

2.1 质粒 pRSET-HBc-VIP(图 2 左)


将该质粒作模板用 HBc 5'和 3'端引物可扩增出特异性 451 bp 片段,此对应于 HBc 的1~435 bp 片段,说明重组质粒中有 HBc 的1~435 bp 片段. 另用HBc 5'端引物和 VIP 3'端引物能特异性扩增出一长约 541 bp 片段,此长度与 HBc 的1~435 bp 和 VIP 的总长度相符,说明重组质粒中 VIP 是紧接在 HBc 的1~435 bp之后. 用 HBc 第 244~261 位碱基序列与VIP 3'端引物可特异性扩增出 300 bp 片段,此长度也与 HBc 的244~435 bp 和 VIP 的总长度相符,这也说明 HBc 的1~435 bp 片段和 VIP 序列已成功连接.用 BamH I、EcoR I和 Nhe I都可将重组质粒切成长约3.43 kb 的线性片段(电泳图谱未列出).


2.2 质粒 pBSKS-VIP-HBc(图 2右) 将该质粒作为模板,用 HBc-1-75、VIP 和

HBc-82-145的引物能分别特异性扩增出长约 241 bp、103 bp 和 199bp 片段. 用 HBc-1-75 5' 端引物和 HBc-82-145 3' 端引物、HBc-1-75 5' 端引物和 VIP 3'端引物、VIP 5' 端引物和 HBc-82-145 3' 端引物能分别特异性扩增出长约 526 bp、335 bp 和 300 bp 片段.

此外用 BamH I、Pst I、EcoR I 和 Hind III 内切酶 消化 pVIP—HBe 质粒都可获得 1 条长约 3. 46 kb 片段;用 BamH I $\$ Hind III 双酶切则可得一 513 bp 左右和 -2.96 kb 左右片段(电泳图谱未列出),分别与融合基因片段和线性质粒 pBSKS 的长度相符. 这都说明 VIP 已成功插入 HBe 的中间.

构建质粒 pVIP-HBe 时为避免 Pst I 和 EcoR I 紧连造成的酶切困难,在克隆 HBe-1-75 片段后,笔者从 质粒 pHBe-VIP 上 用都含 EcoR I 切点的 HBe-82-145 3'端和 5'端引物扩出 HBe-82-145 和 VIP 前后相连的片段,经 EcoR I 酶切后连接再用 VIP5'端引物和 HBe-82-145 3'端引物扩增,扩出 片段中 HBe-82-145 在 VIP 之后,将该片段插入到 质粒 pHBe1-75 中产生 VIP 位于 HBe 中间的质粒 pVIP-HBe. 在融合过程中使用的质粒是 pRSKS +/- 而不是 pRSET-A,目的是使 VIP-HBe 融合基因能亚克隆至质粒 pRSET-A 的 BamH I $\setminus EcoR$ I 位点之间,使表达的融合蛋白在经 His-Tag 纯化后能经裂解去掉 N 端的 His-Tag. 下一步工作是将 VIP 和 HBe 的融合基因亚克隆入表达质粒 pRSET-A 中.

M 为 100 bp 梯度 Mark; A, B, C, D, E, F分别为 HBc-82-145+VIP(300 bp), HBc-1-145+VIP(541 bp), HBc-1-145(451 bp), VIP+HBc(526 bp), VIP+HBc-82-145(300 bp), HBc-1-75+VIP(335 bp)

Lane M, 200 bp DNA lader molecular weight markers; lane A, HBc $^-$ 82 $^-$ 145 $^+$ VIP (300 bp); lane B, HBc $^-$ 1 $^-$ 145 $^+$ VIP (541 bp); lane C, HBc $^-$ 1 $^-$ 145 (451 bp); VIP $^+$ HBc (526 bp); lane E, VIP $^+$ HBc $^-$ 82 $^-$ 145 (300 bp); lane F, HBc1 $^-$ 75 $^+$ VIP (335 bp)

图 2 不同引物组合与质粒 pHBc-VIP(左)和 pVIP-HBc(右)扩增后产生的 DNA 片段长度

致谢: 对预防兽医学 98 级博士研究生吕英姿在实验中给予的帮助和建议表示衷心感谢!

参考文献:

- [1] El HALAWANI M E. SILSBY J I. ROZENBOIM I. et al.
 Increased egg production by active immunization against vasoactive intestinal peptide in the turkey (*Meleagris gallapavo*)

 [1] Biol Reprod. 1995, 52: 179—183.
- [2] 陈 峰, 施振旦, 毕英佐, 等. 主动免疫血管活性肠肽对 泰和鸡繁殖性能的影响[J]. 华南农业大学学报, 1997, 18, (增刊): 45-50.
- [3] El HALAWANI M E, WHITTING S E, SILSBY J L, et al. Active immunization with vasoactive intestinal peptide in the turkey hens J . Poultry Science, 2000, 79, 349—354.
- [4] STAHL S J. MURRAY K. Immunogenicity of peptide fusions to hepatitis B virus core antigen[J]. Proc Natl Acad Sci USA,

- 1989, 86: 6 283-6 287.
- [5] SCHIDELF, MORIARTY AM, PETERSON DL, et al. The position of heterologous epitopes inserted in hepatitis B virus core particles determines their immunogenecity [J]. J Virol, 1992, 66: 106—114.
- [6] 李光地, 汪 滨, 陈作义,等. HCG 抗原决定簇与乙肝病毒核心抗原的融合表达[J]. 生物化学与生物物理学报, 1996, 28; 178—186.
- [7] 孙殿兴, 胡大荣. HBV 核心蛋白作为免疫载体的研究进展[J]. 国外医学免疫学分册, 2001, 24(1): 30—33.
- [8] GOUGH N.M., MURRAY K. Expression of the hepatitis B virus surface, core and antigen genes by stable rat and mouse cell lines J. J. Mol Biol, 1982, 162; 43-67.
- [9] 杨 莉,刘 晶,孔玉英,等. HCV 核心区与 HBV 核心 区融合基因的 DNA 免疫 J]. 中国科学(C辑), 1999, 29 (3): 246-252.

Construction of Recombinant Fusion Genes with Goose VIP and Hepatitis B Core Antigen cDNAs

SHI Zhen-dan, HUANG Yun-mao, CAO Yong-chang, BI Ying-zuo (Dept. of Animal Science, South China Agric, Univ., Guangzhou 510642, China)

Abstract: In the approaches of constructing recombinant vaccines based on avian vasoactive intestinal peptide (VIP), human hepatitis B core antigen (HBcAg) cDNA was chosen as the carrier for the purpose of enhancing immunogenicity of goose VIP. The VIP cDNA sequence and the 1st to 435th bp sequence of HBc cDNA (coding for 1st to 145th amino acid residues of HBcAg) were respectively amplified and inserted into BamH I \Pst I and Nhe I \BamH i cloning sites of plasmid pRSET-A to produce plasmid pHBc-VIP containing the HBc-VIP fusion gene, which would express a fusion protein with VIP positioned posterior to the 145th amino acid residue of HBcAg. Then the 1st to 225th bp sequence of HBc cDNA amplified, and the sequence starting from 244th bp of HBc cDNA to the end of VIP sequence of pHBc-VIP was amplified, digested with EaR I, ligated and then amplified were respectively inserted into the BamH I \Pst I and the Pst I \Hind III cloning sites of plasmid pBSKS +/— to construct plasmid pVIP-HBc, which contains a fusion gene with VIP sequence inserted into the middle of HBc cDNA, and coding for a fusion protein with VIP sequence inserted into the middle of HBcAg.

Key words: vasoactive intestinal peptide; hepatitis B core antigen; fusion gene

【责任编辑 柴 焰】