文章编号: 1001-411X(2002)01-0035-03

推迟供卵条件下卷蛾分索赤眼蜂的生殖对策

陈科伟,黄寿山,吴伟坚

(华南农业大学昆虫生态研究室,广东广州510642)

摘要:通过推迟供卵的方法考察了卷蛾分索赤眼蜂(Trichogrammatoidea bactrae)在寄主缺乏情况下的生殖策略. 结果表明,在短期(羽化后4d内)缺乏寄主条件下,卷蛾分索赤眼蜂具有一定的适应性,在恢复供卵首日的寄生卵量有所提高,且其繁殖力和成虫寿命没有受到明显的影响;在长期(羽化后8d内)缺乏寄主情况下,卷蛾分索赤眼蜂没有积极的生殖对策,其群体繁殖力和寿命都受到不同程度的削弱. 在此基础上提出了在利用赤眼蜂自然控制目标害虫的过程中,尤其是在目标寄主匮乏时,应采取相应的田间保护和增强措施.

关键词: 卷蛾分索赤眼蜂; 推迟供卵; 生殖对策中图分类号: (968.1 文献标识码: A

研究天敌治虫的中心问题就是了解影响目标害虫田间数量变化过程中天敌对抑制其数量变动的作用^{1,2}.从食物链的关系上来分析,天敌的消长总是跟随在寄主昆虫之后,寄主种群消长动态对天敌种群数量的变动起着决定性的作用,而天敌与其寄主昆虫的种群数量只有保持在一定比例范围内才能转相互间的平衡^[3].但生态系统中会经常出现各种涨落,使两者间的种群数量时刻发生波动时,尤其是在田间寄主缺乏的情况下,能否采取积极的生殖策略,这不仅是赤眼蜂田间应用技术的基础(如采取何种放蜂方式)^[4,5],同时也是定量评估赤眼蜂的控害潜能、保护利用以及研究田间赤眼蜂种群结构变化机制的科学依据^[6].

本文选用寄生小菜蛾卵的优势蜂种卷蛾分索赤眼蜂(Trichogrammatoidea bactrae Nagaraja)作为研究对象,通过推迟供卵的方法来研究其在寄主缺乏情况下的生殖对策,为其田间应用技术提供理论依据.

1 材料与方法

1.1 材料

供试蜂种: 卷蛾分索赤眼蜂(Trichogrammatoidea bactrae Nagaraja), 采自深圳龙岗示范生态农场菜心地小菜蛾卵, 在室内用米蛾卵繁育 20 代.

供试寄主: 米蛾[*Corcyra cephalomica* (Stainton)] 卵, 在室内用面粉饲养, 在繁蜂前用 30 W 的紫外灯照射 30 min, 杀死其胚胎.

1.2 方法

环境条件: 温度 (25 ± 1) $^{\circ}$ C, RH $60\% \sim 70\%$, 光 照为 12 h 光 $^{\circ}$ 12 h 暗, 取接种 30 min 以内的寄生卵作为供试材料. 当赤眼蜂羽化后, 供以 $^{\circ}$ 为 25%的蜂

蜜, 让其充分交配 12 h 后单蜂引入 d 为 1 cm、l 为 5 cm 的指形管中,管壁同样涂有 φ 为 25%蜂蜜,对每头雌蜂分别编号,试验设 9 种处理,即在赤眼蜂羽化后第 1、2、3、4、5、6、7、8 d 首次供给米蛾卵(200 粒° d^{-1}),简记为 T. b—Tr1、T. b—Tr2、T. b—Tr3、T. b—Tr4、T. b—Tr5、T. b—Tr6、T. b—Tr7 和 T. b—Tr8,每 24 h 更换 1 次卵卡,并将更换下的卵卡放入相同试验条件下培养,逐日观察并记录每头雌蜂的存活情况、逐日寄生卵数,同时以完全不供卵的处理作为对照,简记为 T. b—CT. 每处理设 20个重复.

2 结果与分析

2.1 推迟接卵对卷蛾分索赤眼蜂在米蛾卵上的繁殖力及寿命的影响

通过以反映赤眼蜂繁殖力的寄生卵数进行比较、结果(表 1)表明、卷蛾分索赤眼蜂在短期内(羽化后4 d)缺乏寄主对其繁殖潜能有一定的影响,从 T.b一Tr1 到 T.b一Tr4、赤眼蜂的平均寄生卵量有所波动,但寄生卵量维持在 80~100 粒之间.而随着供卵时间的推迟,赤眼蜂的繁殖能力开始受到明显削弱、T.b一Tr5 的寄生卵量为 70.21 粒,随后赤眼蜂的寄生能力急剧下降,T.b一Tr6、T.b—Tr7 和 T.b—Tr8 的平均寄生卵量分别仅为 35.11、32.13 和 23.92 粒.

从反映群体繁殖力的有效繁殖雌蜂数量来看,处理 T.b—Tr6、T.b—Tr7 和 T.b—Tr8 中分别出现了部分 雌蜂不产卵 的现象,其产卵 雌蜂率分别为88.89%、93.33%和61.53%,其他处理的产卵雌蜂率均为100%.在试验过程中也观察到,在处理 T.b—Tr6、T.b—Tr7 和 T.b—Tr8 中,赤眼蜂产卵不积极,往往长时间静止于管壁,部分赤眼蜂在恢复供卵当天就死亡,说明推迟供卵削弱了赤眼蜂群体的繁殖力.

表 1 推迟接卵对卷蛾分索赤眼蜂在米蛾卵上的 繁殖力及寿命的影响¹⁾

Tab. 1 The effect of host suspending on reproduction and survival of Trichogrammatoidea bactrae on eggs of Corcyra cephalomica

寄生卵量			114-147 ^
处理	oviposition / (粒°雌 ⁻¹)		雌蜂寿命
treatment		共卵首日 the first day	longevity
	hosts provided	after hosts provided	of females / d
T. b Tr1	95. 67±5. 29b	33. 71±2. 61c	12.04±0.41a
T. b— Tr2	102. 57±9. 82a	46.07 \pm 3.80b	12.07 \pm 0.69a
T. b— Tr3	88.92 \pm 6.69c	45.77 \pm 3.51b	11.77 \pm 0.70a
T. b— Tr4	85.31 \pm 5.83 c	49. 13±3. 11a	11.93 \pm 0.73a
T. b— Tr5	70. $21 \pm 4.79 \mathrm{d}$	48. 00 ± 2 . 07ab	10.45 \pm 0.64b
T. b— Tr6	35.11±4.34e	$30.47\pm3.97d$	$8.28\pm0.35\mathrm{e}$
T. b— Tr7	32.13±4.55e	31. 27 \pm 4. 44cd	8.70 \pm 0.26d
T. b— Tr8	23. 92 \pm 6. 05f	22.38±5.53e	$9.69{\pm}0.29\mathrm{c}$
T. b— CT			8.13±0.16e

1) 表中同列数字具相同字母者表示在 0.05 水平差异不显著,字母不同者表示差异显著(DMRT)

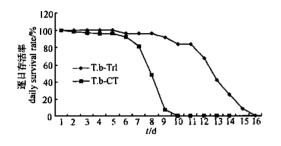


图 1 T. b— Trl 与 T. b— CT 的逐日存活率 Fig. 1 Daily survival rate of T. b—Trl and T. b—CT

从各处理的赤眼蜂寿命来看, 在赤眼蜂羽化后 4 d 内不供卵, 其寿命并没受到明显的影响, T.b—Tr1、T.b—Tr2、T.b—Tr3 和 T.b—Tr4 的寿命分别为12.04、12.07、11.77 和 11.93 d, 相互间差异不显著.但随着供卵时间的推迟, 赤眼蜂的寿命开始受到影响(表 1). 在完全不供卵的情况下, 赤眼蜂的寿命仅8.13 d.从 T.b—Tr1 与 T.b—CT 的逐日存活率来看(图 1), T.b—Tr1 在羽化后第 5 d 开始出现个体死亡现象, 但整个曲线下降比较平缓, 到第 12 d 仍有约50%的存活率.而在完全不供卵条件下, 赤眼蜂到第8 d, 其存活率急剧下降, 到第 9 d, 存活率仅为6.76%.

2.2 推迟供卵条件下卷蛾分索赤眼蜂逐日寄生卵 量分析

从卷蛾分索赤眼蜂的逐日寄生卵量来看(图 2), 各处理的赤眼蜂在供卵当日就达到其寄生卵量高 峰.但从各处理赤眼蜂在供卵当日的寄生卵量来看, 雌寄生卵量为 46.07、45.77、49.13、48.00 粒, 而 T.b — Tr1 的仅为 33.71 粒, 差异显著(表 1).这说明卷蛾分索赤眼蜂在寄主短期(羽化后 4 d 内)缺乏的情况下, 能采取一定的措施来调节自身的生殖策略, 但在较长时期(羽化后 8 d 内)缺乏寄主的条件下, 卷蛾分索赤眼蜂对环境的适应能力显得较为被动, 其群体繁殖力、寿命将随寄主缺乏时间的延长迅速削弱.

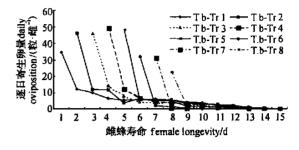


图 2 推迟接卵条件下卷蛾分索赤眼蜂逐日寄生卵量

Fig. 2 Daily oviposition of *Trichogrammatoidea bactrae* in hosts suspending

3 讨论

- 3.1 在短期(羽化后 4 d 内)缺乏寄主的情况下,卷蛾分索赤眼蜂能积极调节自身的生殖策略,表现出一定的适应性,卷蛾分索赤眼蜂这种积极的生殖对策可以说是其在长期进化过程中发展的一种生存策略.
- 3.2 在长期(羽化后 8 d 内)缺乏寄主的情况下,卷蛾分索赤眼蜂的群体繁殖力受到明显的削弱,寿命缩短,这与 Bai 等^{[q} 所报道的限制性供卵对微小赤眼蜂 *Tichogramma minutum* 生殖与存活影响的结果是一致的,即赤眼蜂在供卵条件下的寿命比完全不供卵情况下的要长.如果在田间出现较长时间内缺乏寄主的情况,这对赤眼蜂的存活是极为不利的.
- 3.3 卷蛾分索赤眼蜂的成虫期在寄主匮乏时,能积极调整自身生殖对策的时间阀值为 4 d,而 4 d 以后,卷蛾分索赤眼蜂的群体繁殖力和寿命将迅速削弱. 掌握这种策略对田间采取何种放蜂方式以及放蜂的时间和次数具有一定的指导意义.
- 3.4 从生殖策略来看,卷蛾分索赤眼蜂是典型的 r 对策种,以高繁殖率来获得生存的机会,但在资源匮乏时,其群体的繁殖力急剧下降,种群的发展受到抑制.因而,如何在不稳定的生态系统中建立较稳定的赤眼蜂种群,尤其是在田间寄主缺乏时,是否能采取积极的保护和增强措施成为提高赤眼蜂防虫效果的关键因子之一.

'. b—Tr2、T. b—Tr3、T. b—Tr4 和 T. b—Tr5 的平均每 · ?1994-2016 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

参考文献:

- [1] 赵修复. 害虫生物防治[M]. 北京. 中国农业出版社, 1999. 18-26.
- [2] 朴永范. 赤眼蜂生产及应用[M]. 北京: 中国农业出版 社, 1997. 19—23.
- [3] 夏北成.关于利用害虫天敌之理论基础的思考[J]. 昆虫天敌, 1992, 14(1): 1-5.
- [4] 忻介六. 天敌昆虫的增强问题[]]. 昆虫天敌, 1985, 7

- (2): 72-81.
- [5] van LENTEREN J C. Quality control of natural enemies: hope or illusion[A]. BIGLER F. Fifth work shop of the IOBC global working group "Quality control of mass reared arthopods"
 [C]. Zurich Rechnholz: Swiss Federal Research Station for Agronomy, 1991. 1—14.
- [6] BAI B. SMITH S.M. Effect of host availability on reproduction and survival of the parasitoid wasp *Trichogramma minutum* [J] . Ecological Entomology, 1993, 18: 279-286.

The Reproduction Strategy of *Trichogrammatoidea bactrae* in Hosts Suspending

CHEN Ke-wei, HUANG Shou-shan, WU Wei-jian (Lab. of Insect Ecology, South China Agric. Univ., Guangzhou 510642, China)

Abstract: The reproduction strategy of *Trichogrammatoidea bactrae* Nagaraja was analyzed when the host availability suspended. It was showed that *T. bactrae* could adjust its reproduction strategy when the host was unavailability in a short period (4 days after emergence). Its oviposition was improved on the first day when hosts were availability, while their reproduction potential and female longevity were weakened. However, *T. bactrae*'s reproduction potential and female longevity were significantly reduced when host was unavailability in a long period (8 days after emergence). Based on such reproduction strategy of *Trichogrammatoidea bactrae*, it was helpful to take some protection or augmentation measurements to improve its reproduction potential when host was unavailability in field.

Key words: Trichogrammatoidea bactrae Nagaraja; reproduction strategy; host suspended

【责任编辑 周志红】

(上接第34页)

The Influence of Temperature and Host Plants on the Experimental Population of *Aphis gossypii* Glover

ZHOU Qiong, LIANG Guang—wen, CEN Yi—jing

(Lab. of Insect Ecology, South China Agric. Univ., Guangzhou 510642, China)

Abstract: A comparative study on the population of cotton aphid (*Aphis gossypii* Glover) feeding on three host plants (balsam pear, towel gourd and cowpea) was carried out at 18, 25, 32 °C in laboratory. The results showed that there were significant interactions between the vegetable species and temperatures on cotton aphid. The survival rate of nymphs, the longevity and fecundity of cotton aphid were significantly different in the temperatures and host plants. The index of population development trend of cotton aphid was the highest for balsam pear at 18 °C(6.288). The host selectional and nonselectional experiments were resulted that balsam pear was the best host and towel gourd was the second.

Key words: temperature; host plant; Aphis gossypii Glover; index of population development trend

【责任编辑 周志红】