文章编号: 1001-411X (2002) 01-0038-03

金属离子对水稻纹枯病菌菌丝生长 和菌核形成的影响

沈会芳, 周而勋, 戚佩坤 (华南农业大学资源环境学院,广东广州510642)

摘要,研究了 12 种金属离子对水稻纹枯病菌菌丝生长和菌核形成的影响, 按其对菌丝生长和菌核形成有抑制作用 的浓度范围不同分为 3 类: (1)对病菌有抑制作用的浓度最高, 在2 500 4g/mL 时, 仍有菌丝生长和菌核形成, 属于这 一类的有 Mg^{2+} 、 Ba^{2+} 、 Ca^{2+} 和 Mn^{2+} 4种金属离子; 值得一提的是, Mg^{2+} 在 $100~2~500~\mu_{g/mL}$ 范围内促进菌丝生长和 增加菌核干质量.(2)对病菌有抑制作用的浓度较高,在 500 或 1 000 \(\mu_g\) mL 时可严重抑制菌丝生长和菌核形成,属 于这一类的有 Fe^{2+} 、 Fe^{3+} 、 Cu^{2+} 、 Pb^{2+} 和 Zn^{2+} 5 种金属离子. (3) 在浓度为 10 或 50 μ g/ mL 时严重抑制菌丝生长和菌 核形成,属于这一类的有 Ag^+ 、 Hg^{2+} 和 Cd^{2+} 3 种金属离子.

关键词: 金属离子: 水稻纹枯病菌: 菌丝生长: 菌核形成 中图分类号: S435. 111. 4 文献标识码: A

随着工业不断发展,一些金属离子尤其是重金 属离子对土壤或水源的污染事件时有发生,土壤或 水中这些金属离子可与土传病原真菌或水中的真菌 发生作用,影响真菌生长、生殖和致病力等. 近年来, 国内外在这方面均有一些报道,如 Englander 等[1]报 道了 Cu^{2+} 等 17 种金属离子对栗疫病菌的影响; 刘杏 忠等^{2]} 报道了 Hg²⁺ 等 6 种重金属离子对水霉的毒 性. 立枯丝核菌(Rhizoctonia solani Kühn)是极其重要 的土传病原真菌,寄主范围广泛,为害严重.近年来, 由立枯丝核菌 AG-1-IA 引起的水稻纹枯病给水稻生 产造成了严重的经济损失,土壤中的金属离子对立 枯丝核菌的影响程度如何,已引起了植物病理学工 作者的关注,并相继开展了有关的研究. 例如, Moromizato 等[3] 发现 Mg²⁺可增加立枯丝核菌 AG-1 菌核 形成数量. 刘力等[4] 研究了 Cu、Fe、Zn、B 对立枯丝 核菌不同融合群的敏感性, 但关于金属离子对水稻 纹枯病菌影响的研究很少, 本试验就 12 种金属离子 对水稻纹枯病菌的影响进行了研究.

材料与方法

1.1 材料

病原菌是水稻纹枯病菌菌株(华南农业大学资 源环境学院真菌研究室保存). 培养基有马铃薯葡萄 糖琼脂(PDA),干酪素葡萄糖琼脂(CDA,成分:干酪 素 15 g+葡萄糖 20 g+纯化琼脂 20 g+去离子水 1000 mL), 干酪素葡萄糖培养液(CDL). 金属离子共 有 12 种, 分别为 Mg²⁺ (MgSO₄. 7H₂O, 分析纯, 广州达 濠化工厂生产)、Ba²⁺ (BaCl₂. 2H₂O, 分析纯, 广东台山 化工厂生产)、 Ca^{2+} (CaCl₂, 2H₂O₃)分析纯,广州化学 试剂厂生产)、Mn²⁺ (MnSO₄, H₂O₂, 分析纯, 上海试剂 三厂生产)、Fe³⁺ (FeCls. 6H2O, 分析纯, 天津市化学 试剂三厂生产)、Fe²⁺ (FeSO₄. 7H₂O₇ 分析纯, 广东台 山化工厂生产)、Cu²⁺ (CuSO₄.5H₂O₇分析纯,国营上 海试剂厂生产)、Pb²⁺(Pb(NO₃)₂,分析纯,广州新港 化工厂生产)、 Zn^{2+} ($ZnCl_2$,化学纯,湖南省株州市化 工原料厂生产)、Ag+ (AgNO3, 化学纯, 中国上海试剂 总厂生产)、Hg²⁺ (HgCl₂, 分析纯, 广州化学试剂厂生 产)和 Cd^{2+} ($CdCl_2$, 2, $5H_2O$, 分析纯, 天津市化学试剂 三厂生产).

1.2 方法

1.2.1 金属离子溶液的配制 在无菌条件下称出 定量的药剂,用少量灭菌去离子水溶解,并定容制成 一定浓度的母液,4℃冰箱内保存备用,试验时,按所 需浓度进行稀释. 供试金属离子的体积质量(/4g/ mL)如下: Mg²⁺、Ba²⁺、Ca²⁺和 Mn²⁺均为 0、100、500、1 000.2500.5000; Fe³⁺ 为 0.5.10.50.100.500.100. Fe^{2+} 为 0.1.5.10.50.100.500.1000, Cu^{2+} 和 Zn^{2+} 均 为 0、1、5、10、50、100、500,Pb²⁺ 为 0、5、10、50、100、 500, Ag⁺ 为 0、0.1、0.5、1、5、10, Hg²⁺ 为 0、0.1、0.5、1、 5.10.50.100, Cd^{2+} 为 0.0.01.0.1.0.5.1.5.10.

1.2.2 金属离子对菌丝干质量的影响 在装有24 mL CDL 培养液的三角瓶中加入 1 mL 按所需浓度稀 释的金属离子溶液,摇匀,对照加入 1 mL 灭菌去离 子水,用 d=4 mm 打孔器在 PDA 上已培养 48 h 的水 稻纹枯病菌菌落最外围切取菌丝块,每个三角瓶中 接入1块菌丝块,每处理3次重复,25 ℃黑暗条件下 培养,每隔 12 h 人工摇瓶 5 min, 7 d 后,过滤取出菌 丝,烘干,称质量.

1.2.3 金属离子对菌核形成的影响 将定容 14.4 mL 的 CDA 熔化,当温度降到 50 °C左右,加入 0.6 mL 按所需浓度稀释的金属离子溶液,对照加入 0.6 mL 灭菌去离子水,摇匀,倒入 d=9 cm 培养皿中制成平板,然后,每平板中央接入一同 1.2.2 的菌丝块,每处理 3 次重复,25 °C黑暗条件下培养 21 d 后,挑出菌核,记录菌核数量及大小,将菌核烘干,称质量.

2 结果与分析

2.1 金属离子对菌丝干质量的影响

金属离子对菌丝干质量的影响结果见图 1: Mg^{2+} 、 Ba^{2+} 、 Ca^{2+} 和 Mn^{2+} 对菌丝生长有影响的浓度较高, 在2 500或 5 000 $\mu_{\rm g/mL}$ 仍有一定菌丝生长. 病

菌对 Mn^{2+} 的敏感性相对较高,在 $5~000~\mu_{\mathrm{g}/\mathrm{mL}}$ 时,菌丝生长完全被抑制。 Ba^{2+} 和 Ca^{2+} 在 $-\mathrm{c}$ 浓度对菌丝生长有轻微促进作用,而 Mg^{2+} 在 $100~2~500~\mu_{\mathrm{g}/\mathrm{mL}}$ 范围内对菌丝生长有明显的促进作用。 Cu^{2+} 、 Fe^{3+} 、 Fe^{2+} 、 Pb^{2+} 和 Zn^{2+} 对菌丝生长有影响的浓度较上述 4 种金属离子稍低,在 500 或 $1~000~\mu_{\mathrm{g}/\mathrm{mL}}$ 时已严重抑制菌丝生长,它们对菌丝生长影响趋势基本一致,从低浓度的不影响到高浓度的抑制菌丝生长,且浓度越高,抑制能力越强,其中, Zn^{2+} 在 $1~5~\mu_{\mathrm{g}/\mathrm{mL}}$ 范围内对菌丝生长有轻微促进作用。 Ag^+ 、 Cd^{2+} 和 Hg^{2+} 对菌丝有抑制作用的浓度更低,在 10 或 $50~\mu_{\mathrm{g}/\mathrm{mL}}$ 时严重 抑制 菌 丝 生 长,它们 对菌 丝 生 长 的 影响趋势也是从低浓度的不影响到高浓度的抑制,且

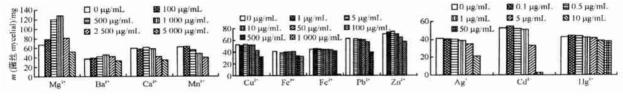


图 1 金属离子对水稻纹枯病菌菌丝干质量的影响

Fig. 1 Effects of metal ions on the dry mass of mycelia of R. solani AG-1-IA

表 1 金属离子对水稻纹枯病菌菌核形成的影响¹⁾
Tab. 1 Effects of metal ions on the sclerofial formation of *R. solani* AG-1-IA

	1ab. 1 Elects of metal folis on the scieroual formation of K. Solam AG-FIA													
ρ(离子ions)		数量	大小	$m(\mp dry)$	ρ(离	子ions)	数量	大小	$m(\mp dry)$	ρ(离	哥子 ions) 数量		大小	$m(\mp dry)$
$/(\mu_{\rm g} \circ_{\rm mL}^{-1})$		no.	size	/ mg	$/(\mu_{\mathbf{g}^{\circ}\mathbf{m}}\mathbf{L}^{-1})$		m.	size	/ mg	$/ (\mu_g \cdot mL^{-1})$		no.	size	/ mg
Mg ²⁺	0	69a	+	77. 1e	Cu ²⁺	0	72b	+	52.7c	Zn^{2+}	0	70a	+	55. 0bc
	100	68a	++	131.0b		1	80 a	+	63.9b		1	56b	+	63.5 ab
	500	70a	++	137.3a		5	76 ab	+	72. 5a		5	54b	+	64.0ab
	1000	66a	++	123.2c		10	71b	+	60.5bc		10	56b	+	62. 3abc
	2500	60b	++	113.0d		50	68b	+	52.5 c		50	49 c	+	56.6bc
	5000	22c	++	40. 7f		100	64 c	+	52. 2 c		100	53b	+	68. 1 a
						500	26d	+	35.5d		500	0d		0d
					Fe ³⁺	0	92 a	+	86.9b					
Ba^{2+}	0	75a	+	73.4a		5	81b	+	86.5b	Ag^+	0	71 ab	+	46.8c
	100	74a	+	73.6a		10	78b	+	86.8b	-	0.1	70 ab	+	88. 7ab
	500	72a	+	62.8ab		50	77b	+	87.4b		0.5	76a	+	96. 6a
	1000	65b	+	58.0 bc		100	81b	+	93. 6a		1.0	66b	+	76. 1b
	2500	58c	+	49.0cd		500	51 c	++	94. 1a		5.0	36 c	++	53.6c
	5000	57c	+	38. 6d		1000	17d	++	56.0c		10.0	39 c	++	70 . 4b
Ca ²⁺	0	33a	++	62.3c	Fe^{2+}	0	28 a	++	65. 7a	Cd^{2+}	0	61 ab	+	52. 7 ab
	100	31a	++	62.0c		5	27 a	++	66. 0a		0.01	63 ab	+	54.8ab
	500	30a	++	63.1c		10	29 a	++	63. 7a		0.10	66 a	+	53. 2ab
	1000	32a	+++	93. 6b		50	28 a	++	63. 5a		0.50	53b	+	53. 0ab
	2500	20b	+++	98.3a		100	24 ab	++	63. 4a		1.00	56b	+	56.8a
	5000	16c	+++	98.4a		500	19b	++	62. 2a		5.00	49 c	+	57. 0a
						1000	3c	+++	43.7b		10.00	48 c	+	41.7b
$\mathrm{M}\mathrm{n}^{2+}$	0	63a	+	80. 4a	${ m Pb}^{2+}$	0	78 a	+	64. 2b	${\rm Hg}^{2+}$	0	84bc	+	62. 1cd
	100	55b	+	77.7a		5	71b	+	62. 1b		0.1	87b	+	65.5 c
	500	45c	+	70. 7b		10	74 ab	+	57.6b		0.5	88b	+	67. 2bc
	1000	19d	+	35.7c		50	78 a	+	56.4bc		1.0	93b	+	83. 4a
	2500	4e	+	19. 3d		100	76a	+	48.8c		5.0	102a	+	83.9a
	5000	0		0e		500	62 c	++	124. 9a		10.0	91b	+	71. 1b
											50.0	70.0	+	57 1d

1)+、++、+++分别表示 80%的菌核 d< 2、2~3 → 3 mm, 表中数据为 3次重复的平均值; 表中同列数据具有相同字母者表示差异不显著(Duncan 法, P>0.05) china Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

浓度越高,抑制能力越强.

2.2 金属离子对菌核形成的影响

金属离子对菌核形成的影响如表 1 所示: 在所 试浓度中, Mg²⁺、Ba²⁺、Ca²⁺和 Mn²⁺ 对菌核数量影 响趋势是由低浓度的不影响到高浓度的抑制。但 Mg^{2+} 在 100 ~ 2 500 μ g/mL、 Ca^{2+} 在 1 000 ~ 5 000 μg/mL范围内增加菌核体积, 使菌核干质量增加, Mn^{2+} 在 5 000 $\mu_{\mathrm{g}}/\mathrm{mL}$ 已完全抑制菌核形成. Cu^{2+} 、 Fe³⁺和 Fe²⁺在所试浓度中,低浓度不影响或轻微增 加菌核数量, 高浓度抑制菌核形成. Pb2+ 在 50 和 100 µg/mL 时, 菌核体积稍变小, 但数量不受抑制, 浓度升到 $500 \,\mu_{\rm g/mL}$ 时, 菌核体积变大, 干质量随之 增加. Zn^{2+} 在 1 ~ 100 μ_g/mL 浓度范围内均减少菌 核形成数量,但菌核干质量反而增加,浓度增大到 $500 \, \mu_{
m g/mL}$ 时,完全抑制菌核形成. 同样, ${
m Ag}^+$ 和 Cd²⁺在所试浓度中,低浓度也不影响或轻微增加菌 核数量, 高浓度抑制菌核形成, 但 Ag^+ 在 $5 \times 10 \mu_g/mL$ 时增大菌核体积. Hg^{2+} 在 0.1~5 $\mu_{g/mL}$ 范围内增 加菌核数量, $5 \mu_{\rm g/mL}$ 时菌核数量最多, 浓度增大到 50 \(\mu_g/mL\) 才表现出明显的抑制作用.

3 结论与讨论

本文研究了 12 种金属离子对水稻纹枯病菌菌 丝生长和菌核形成的影响,按其对纹枯病菌作用的 浓度范围不同分为 3 类, Mg^{2+} 、 Ba^{2+} 、 Ca^{2+} 和 Mn^{2+} 为 第一类,它们影响病原菌的浓度较高,在 2 500 或 5 000 μ g/ mL 仍有一些菌丝生长和菌核形成;第二类 为 Cu^{2+} 、 Fe^{3+} 、 Fe^{2+} 、 Pb^{2+} 和 Zn^{2+} ,这 5 种金属离子在 500 或 1000 μ g/ mL 时可严重抑制菌丝生长和菌核形成;第三类是 Ag^+ 、 Cd^{2+} 和 Hg^{2+} ,它们在 10 或 50 μ g/ mL时严重抑制菌丝生长和菌核形成.

Moromizato 等 ^{3]} 报道: Mg^{2+} 在 $100 \sim 5~000~\mu_{\mathrm{g}}/\mathrm{mL}$ 范围内促进菌核的形成, 浓度越高, 促进能力越强. 本研究结果表明: Mg^{2+} 在 $100 \sim 2~500~\mu_{\mathrm{g}}/\mathrm{mL}$ 内促进菌核体积和干质量增加, 而 $5~000~\mu_{\mathrm{g}}/\mathrm{mL}$ 则抑制菌核形成. 造成这种差异的原因可能与培养时间有关, Moromizato 培养 $4~\mathrm{d}$ 就统计结果, 而本试验培养 $21~\mathrm{d}$ 后才统计结果. 本试验结果与刘力等 [4] 报道的 Cu^{2+} 、 Fe^{2+} 和 Zn^{2+} 对立枯丝核菌 AG -1 的抑制作用基本一致.

本研究发现,一些金属离子浓度较高时,抑制菌核数量,但增加菌核体积,使得菌核干质量下降很少甚至增加,因此,研究金属离子对水稻纹枯病菌菌丝生长和菌核形成的影响时,只考虑对菌核数量或菌核干质量的影响都不全面,应两者综合考虑才能全面反映对菌核形成的影响.金属离子在高浓度增大菌核体积及干质量,即增加了菌核单粒质量,表明组成菌核的细胞增多,这可能是病原菌在不利条件下的一种自我保护反应,体积增大不利于有害物质渗入菌核内部、增加菌核存活力;同时,细胞增多,其萌发力也相应增加.

参考文献:

- [1] ENGLANDER C M, CORDEN M E. Stimulation of mycelial growth of *Endothia parasitica* by heavy metals[J]. Appl Microbiol. 1971, 23; 1 012—1 016.
- [2] 刘杏忠,沈崇尧,裘维蕃. 重金属离子对一些水霉的毒性[1]. 植物病理学报, 1989, 19(3): 173—177.
- [3] MOROMIZATO Z. ISHIZAKI F, TADARA K, et al. The effects of phosphorus and magnesium on sclerotium formation in Rhizoctonia solani Kühn [J]. Annu Phytopathol Soc Japan, 1991, 57; 649—656.
- [4] 刘 力, 葛起新. 立枯丝核菌融合群对四种微量元素 敏感性的研究[J]. 植物病理学报, 1988, 18(3): 175— 178.

The Effects of Metal Ions on Mycelial Growth and Sclerotial Formation of *Rhizoctonia solani* AG-1-IA

SHEN Hui-fang, ZHOU Er-xun, QI Pei-kun (College of Resources and Environment, South China Agric. Univ., Guangzhou 510642, China)

Abstract: The effects of twelve metal ions on mycelial growth and sclerotial formation of *Rhizoctonia solani* AG-1-IA were studied. According to the concentration affecting mycelial growth and sclerotial formation, these twelve metal ions could be divided into three groups: (1) The inhibiting concentration is the highest. There was still a little mycelial growth and sclerotial formation at 2 500 μ g/mL. Mg²⁺, Ba²⁺, Ca²⁺ and Mn²⁺ belong to this group. Worthy of mention is that Mg²⁺ promoted mycelial growth and increased the dry mass of mycelia at the concentrations of 100 ~ 2 500 μ g/mL. (2) The inhibiting concentration is higher. When the concentration is 500 or 1 000 μ g/mL, mycelial growth and sclerotial formation were significantly inhibited. Fe²⁺, Fe³⁺, Cu²⁺, Pb²⁺ and Zn²⁺ belong to this group. (3) When the concentration is 10 or 50 μ g/mL, mycelial growth and sclerotial formation were significantly inhibited. Ag²⁺, Hg²⁺ and Cd²⁺ belong to this group.

Key words: metal ions; *Rhizoctonia solani* AG-1-IA; mycelial growth; sclerotial formation

【责任编辑 周志红】