文章编号: 1001-411X(2002)01-0094-01

氧化黑液木素-Pb²⁺、Cd²⁺螯合物稳定性的初步研究

卢其明1,乐学义1,王德汉2,廖宗文2

(1华南农业大学理学院,广东广州510642; 2华南农业大学资源环境学院,广东广州510642)

A Preliminary Study on Stability of Pb²⁺, Cd²⁺ Chelated with Oxidized Alkili Lignin

LU Qi-ming¹, LE Xue-yi¹, WANG De-han², LIAO Zong-wen² (1 College of Sciences, South China Agric. Univ., Guangzhou 510642, China; 2 College of Resources and Environment, Guangzhou 510642, China)

关键词: 木素; 稳定常数; Pb²⁺; Cd²⁺ **Key words**: Lignin; stability constants Pb²⁺; Cd²⁺
中图分类号: Q641. 4 文献标识码: A

酸析木素法是处理造纸黑液的有效方法之一,但由于木素产品的市场有限,严重制约了该方法的应用.因此,开拓造纸黑液木素的应用范围,成为当前十分活跃的研究领域¹.造纸黑液木素是一类酚型网状大分子,含有一定的活性基团,尤其是通过结构改性,表现出较强的螯合能力.本文应用离子交换平衡法研究了氧化造纸黑液木素与 Pb^{2+、Cd²⁺的螯合作用,并定量计算了螯合物的稳定常数.}

1 材料与方法

粉末态造纸黑液木素(山东晨鸣纸业集团碱木素车间), 经稀硝酸氧化^{2]} 得氧化木素(OLG); 732型强酸性阳离子交换树脂(广州市化学试剂二厂)按文献^[3] 方法处理; 硝酸和高氯酸为优级纯, 其他试剂均为分析纯.

WFX-1C 型原子吸收光谱仪(北京第二光学仪器厂); PHS-2C 型酸度计(杭州万达仪器仪表厂), 精度为 0.01, 每次使用时均用 pH 值为 6.68 和 9.18 的标准缓冲溶液校正,测定在室温下进行.

应用离子交换平衡法测定氧化木素金属螯合物的稳定常数. 首先. 配制一系列离子交换体系(表 1),振荡 1 h. 平衡 24 h. 平衡后, 用垫有玻璃棉的漏斗过滤. 取滤液 25 mL 置于 100 mL 高型烧杯中, 在砂浴上蒸干; 然后, 加入 3 mL 浓硝酸和 2 mL浓高氯酸. 盖上表面皿, 在 $150 \sim 180$ $^{\circ}$ 砂浴上回流硝化; 等溶液清澈后, 去掉表面皿, 继续在砂浴上硝化, 直至烧杯内析出折色沉淀为止. 冷却后, 用2 mL温热的 0.25 mol/ L HCl 溶解沉淀. 趁热过滤. 用二次蒸馏水洗涤 $3 \sim 4$ 次. 将滤液和洗涤液一起转入容量瓶中, 并定容至 25 mL. 最后, 用原子吸收分光光度计测定溶液中金属离子的浓度.

2 结果与讨论

本研究的离子交换体系为: pH 值 7.5 离子交换树脂2.00 g 总体积 100 mL; 各处理中 OLG 表观浓度分别为: 6.92× 10^{-5} 、1.38× 10^{-4} 、2.77× 10^{-4} 、5.52× 10^{-4} 、1.10× 10^{-3} mol° L⁻¹. Pb²⁺ OLG 体系中 Pb²⁺表观浓度为 2.41× 10^{-5} mol° L⁻¹, Cd²⁺ OLG 体系中 Cd²⁺表观浓度为 4.45× 10^{-5} mol° L⁻¹.

金属离子(M) 与氧化木素(OIG)的配位平衡可表示为: $M+x(OIG)=M(OLG)_x$ 与之相对应的平衡常数为: $K=[M(OIG)_x]/[OLG]^{*}[M]$. 式中, [M] 、[OLG] 、 $[M(OLG)_x]$ 为金属离子(省略了离子电荷)、氧化木素和所形成螯合物的平衡浓度、x 为螯合物的平衡配位数. 设 λ_0 为无 OLG 存在时 M 在树脂和溶

液间的分配系数. λ 为有 OLG 存在时 M 在树脂和溶液间的分配系数. λ 可由 λ_0 和测定的浓度 $\{[M]+[M(OLG)_x]\}$ 求出, 进而可根据下式: $\lg(\lambda_0/\lambda-1)= \lg K+x\lg[OLG]$,以 $\lg(\lambda_0/\lambda-1)$ 对 $\lg OLG\}$ 作直线求出 x 和 $\lg K$.

结果(表 1)表明,氧化木素对 Pb^{2+} 和 Cd^{2+} 有较强的螯合作用,稳定常数大小与 Zn^{2+} 螯合物($\lg K = 4.23$) $^{\lfloor 2 \rfloor}$ 相近. 平衡常数的测定可为 OLG 与金属离子的螯合特性研究提供基础数据,为造纸黑液木素在治理重金属污染方面的应用提供理论依据. OLG 与金属离子螯合物的结构信息和用 OLG 治理重金属污染的合理途径有待进一步研究.

表 1 氧化木素- Pb²⁺、Cd²⁺ 螯合物 lgK 及x 值 $(I=0.1 \text{ mol}^{\circ} \text{ L}^{-1} \text{ NaCl})^{1)}$

Tab. 1 $\lg K$ and x for Pb^{2+} OLG and Cd^{2+} OLG

体系 system	no.	lg[OLG]	λ^{2}	$\lg(\lambda_0/\lambda-1)$
Pb ²⁺ — OLG	1	-4. 16	440	0.469
	2	-3.86	292	0.693
	3	-3.56	101	1.211
	4	-3.26	45.8	1.567
	5	-2.96	25.3	1.830
$\mathrm{Cd}^{2+}\mathrm{-OLG}$	1	-4. 16	228	-0.111
	2	-3.86	168	0.151
	3	-3.56	100	0.486
	4	-3.26	58.5	0.772
	5	- 2.96	30.6	1.086

1) 对于 Pb^{2+} OLG 螯合物, x=1. 13, lgK=5. 18; 对于 Cd^{2+} OLG 螯合物, x=1. 00, lgK=4. 04; 2) Pb^{2+} OLG 部分由 $\lambda_0=1$ 736 计算, Cd^{2+} OLG 部分由 $\lambda_0=4$ 04 计算

参考文献:

- [1] 马立群. 碱法造纸黑液综合利用[1]. 现代化工, 1998, (12): 15-18.
- [2] 乐学义, 卢其明, 肖雄师, 等. 造纸黑液木素稀硝本氧化及其螯合锌肥的初步研究[J]. 华南农业大学学报, 1999, 20(2): 125—126.
- [3] 文启孝. 土壤有机质研究法[M]. 北京: 农业出版社, 1984. 248— 249. 【责任编辑 周志红】