Vol. 23, No. 3 Jul. 2002

文章编号, 1001-411X(2002)03-0060-03

飞机草化感作用的初步研究

何衍彪1,张茂新1,何庭玉2,谷文祥2

(1 华南农业大学资源环境学院,广东 广州 510642; 2 华南农业大学理学院, 广东 广州 510642)

摘要: 对飞机草(Chromolaena odoratum (L)R. M. King and H. Robinson.)乙醇提取物的化感作用进行了初步研究. 结 果表明,飞机草乙醇提取物对豇豆、青瓜、萝卜、菜心、大白菜、小白菜和水稻、稗草具有不同程度的化感作用,总体 上呈现出低促高抑的现象,且随着溶液浓度增大而抑制作用增强. 其中干物质为 0.1 g/mL 的飞机草乙醇提取物溶 液对菜心、大白菜和小白菜的种子萌发、幼苗生长、根长生长抑制作用最为明显;干物质为 0 01、0 002 g/mL 溶液对 小白菜、大白菜和稗草的幼苗生长均具有一定的促进作用;干物质为 0 01、0 002 g/mL 溶液对青瓜、小白菜和稗草 根长生长也具有一定的促进作用.

关键词:飞机草: 化感作用: 植物源农药

中图分类号: 0948 122 1

文献标识码: A

在自然环境中,植物通过次生化合物的释放而 产生相互作用,以保护自己有利的生态环境,即化感 作用(又称他感作用)[1]. 广义的化感作用既包括对 植物的化感作用,也包括对其他生物的化感作用,植 物化感作用对于研究植物的进化及其开发应用具有 重要的意义.

飞机草 Chromolaena odoratum (L.) R. M. King and H. Robinson, 又名香泽兰] 原产南美洲, 现已广布于中 国海南、云南南部和西南部地区及越南、柬埔寨、泰 国、菲律宾、马来西亚、印度、澳大利亚、南非、墨西哥 和巴拿马等地,已成为一种世界性的恶性杂草[2~3]. 冼继东等^[4] 研究了飞机草对昆虫的生物活性, 结果 表明其乙醇提取物对小菜蛾、美洲斑潜蝇、荔枝蒂蛀 虫等害虫具有良好的成虫产卵忌避作用,是一种潜 在的植物保护剂,在植物源农药中可能具有广阔的 发展前景. 丁智慧等[5] 从飞机草的乙酸乙酯提取物 中分离得到 4 个黄酮类化合物, 从石油醚提取物中 分离得到 3 个化合物, 然而飞机草对植物的化感作 用鲜见报道. 笔者对飞机草的化感作用进行了初步 研究,旨在了解飞机草中的次生化合物对植物生长 的影响及寻找作为除草剂先导化合物的可能性,为 其作为植物保护剂在无公害蔬菜生产上的应用寻找 理论和实践依据.

材料与方法

试验材料 1.1

供体植物飞机草采自海南省海口市琼山桂林

洋, 采样时为盛花期, 成片生长, 并经华南农业大学 林学院李秉滔教授鉴定. 受试植物豇豆[Vigna sinensis (L.) Endl.]、荣丰九号刺青瓜(Cucumis sativus L.)、短叶 13 号萝卜(Raphanus sativa L.)、广州 31 号 四九油青菜心(Brassica parachinensis L. cv. Apr. — Sep. Oil Green)、清江小白菜(Brassica chinensis L. cv. Qingjiang) 及天津麻叶大白菜[Brassica perkinensis (Lour.) Rupr. cv. Maye],购于广州市种子公司门市 部;籼稻一号(Oryza sativa L.),华南农业大学农学院 提供; 稗草[Echinochloa oryzicola (Vasing) Ohwi.] 种子 采自湖南省邵阳市市郊.

1.2 试验方法

1.2.1 飞机草提取物的提取及溶液配制方法[5~6] 取飞机草鲜茎叶 3 kg, 切碎, 然后在 50 ℃以下烘干, 用植物试样粉碎机粉碎,用 60 cm×30 cm 的滤纸包 \mathbf{z} , 在多功能提取器中用 $\mathbf{\varphi} = 95\%$ 的乙醇回流提取 12 h, 浓缩后用清水定容至 0. 1 g/mL(即 100 mL 水中 含有10g植物干物质),冷藏待用.

1.2.2 飞机草提取物对植物种子萌发的影响试验 分别取 d 为 9 cm 的培养皿,垫上滤纸,加入 5 mL 不 同浓度的提取物稀释液, 待乙醇挥发后, 选取浸泡过 的饱满受试植物种子20粒,均匀地放在培养皿中,26 ~31 ℃下暗培养. 每个处理设 3 个重复, 对照用清 水. 种子萌发过程中, 适当补加清水, 使滤纸保持湿 润. 3 d 后调查种子的萌发情况, 将相应处理与对照 进行比较,按(1)式计算种子的相对萌发率 $[6^{8}]$:

相对萌发率 = (处理萌发率/对照萌发率)×100.

(1)

1.2.3 飞机草提取物对植物苗长和根长的影响试验

取底部 d 为 4.5 cm 的一次性塑料杯,垫上滤纸,加入 2.5 mL 不同浓度的乙醇提取物溶液,待乙醇挥发后,选取刚发芽(露白)的受试植物种子 10 粒,均匀地放在塑料杯中,在 $26 \sim 31$ °C、光线良好的室内进行培养.每个处理设 3 个重复,对照用清水.试验过程中,适当补加清水,使滤纸保持湿润. 5 d 后测定幼苗的苗长和根长,按(2)式计算幼苗的相对苗长和根长 $[6^{-8}]$:

相对苗长(或根长)=(处理苗长/对照苗长)×100.

(2)

1.2.4 数据分析方法 把对照种子萌发率或对照 苗长(或根长)定义为 100, 处理萌发率或处理苗长(根长)按照式(1)和式(2)计算相对萌发率、相对苗长和相对根长, 试验结果用 DPSwin 软件进行邓肯氏分析[6~8].

2 结果与分析

2.1 飞机草乙醇提取物对植物种子萌发的影响

飞机草乙醇提取物对植物种子萌发具有不同程度的影响(表 1),其中 ℓ (干物质)为 0.1~g/mL的飞机草乙醇提取物溶液对菜心、小白菜和大白菜等种子具有明显的抑制萌发的作用,而青瓜和稗草种子对飞机草乙醇提取物不敏感. ℓ (干物质)为 0.002~g/mL的飞机草乙醇提取物溶液对受试植物种子相对萌发率的影响不明显.

表 1 飞机草乙醇提取物对植物种子相对萌发率的影响¹⁾
Tab 1 Effect of alcohol extracts of *Chromolaena odoratum* on seed's relative germination rate

	ρ _{(干物质}	対照 control		
受试植物 plant -	0.100	0.010	0.002	(水 water)
豇豆 V. sinensis	83. 6b	96. 4 ab	98. 2a	100a
青瓜 C. sativus	101.8a	101.8a	103.6a	100a
萝卜 R. sativa	90. 0b	98. 3 a	98.3a	100a
菜心 B. parachinensis	28. 3b	90.6a	92.5a	100a
小白菜 B. chinen sis	11 . 9b	96. 6a	96.6a	100a
大白菜 B. perkinensis	21. 7b	100 . 0 a	98.3a	100a
籼稻 O. sativa	83. 9b	96.4a	98. 2a	100a
稗草 E. oryzicola	110.5a	90.0a	110.5a	100a

¹⁾ 表中数据为 3 个重复的平均数,同行数字后面字母相同者,经邓肯氏检验(P=0.05)差异不显著

2.2 飞机草乙醇提取物对植物相对苗长的影响

飞机草乙醇提取物对植物幼苗生长具有不同程度的影响(表2),其中 ρ (干物质)为 0.1 g/mL 的飞机草乙醇提取物溶液对植物苗长具有明显的抑制作用; ρ (干物质)为 0.01,0,000 g/mL 溶液对小白菜、大

白菜和稗草苗长具有一定的促进作用;随着溶液浓度增大抑制作用增强.

表 2 飞机草乙醇提取物对植物相对苗长的影响1)

Tab. 2 Effect of alcohol extracts of *Chromolaena odoratum* on seedling's relative growth

受试植物	0(干物质	对照 control		
plant	0.100	0.010	0.002	(水 water)
豇豆 V. sinensis	40. 1d	63.7 c	84.8b	100a
青瓜 C. sativus	65. 9d	83.0c	88.7b	100a
萝卜 R. sativa	29.5 c	47. 7b	48.3b	100a
菜心 B. parachinensis	1. 1d	51.9c	69.7b	100a
小白菜 B. chinensis	12. 9d	109. 1b	125.3a	100c
大白菜 B. perkinensis	8.7c	89. 6b	105.5a	100a
籼稻 O. sativa	70. 5d	81. 2c	86.5b	100a
稗草 E. aryzicola	70. 5d	88.4c	108. 2a	100b

1) 表中数据为 3 个重复的平均数,同行数字后面字母相同者,经邓肯氏检验(P=0.05)差异不显著

2.3 飞机草乙醇提取物对植物根长的影响

飞机草乙醇提取物对植物幼苗根的生长具有不同程度的的影响(表 3),其中 ρ (干物质)为0.1 g/mL的飞机草乙醇提取物溶液对植物根长生长具有明显的抑制作用; ρ (干物质)为0.01、0.002 g/mL溶液对小白菜和稗草根长生长具有一定的促进作用;随着溶液浓度增大抑制作用增强.明显具有化感物质的典型特征,即低促高抑现象.

表 3 飞机草乙醇提取物对植物相对根长的影响1)

Tab. 3 Effect of alcohol extracts of *Chromolaena odoratum* on roof's relative growth

受试植物	0(干物质	dry matter)/($g^{\circ} mL^{-1}$	对照 control
plant	0.100	0.010	0.002	(水 water)
豇豆 V. sinensis	51.8c	90 . 6a	78.4b	100 . 0a
青瓜 C. sativus	58. 9d	103. 2a	94.0c	100. 0b
萝卜 R. sativa	13. 1 c	93. 4b	96. 4ab	100 . 0 a
菜心 B. parachinensis	2.4d	19.3 c	45.0b	100 . 0 a
小白菜 B. chinensis	3.8c	133.5a	143.8a	100. 0b
大白菜 B. perkinensis	2.4d	57.8c	71.4b	100 . 0 a
籼稻 O. sativa	19.9 c	90 . 1b	93.3b	100.0a
稗草主根 E. <i>ayzicola</i> main root	12. 4d	82.7c	116. 2a	100. 0b
稗草侧根 E. <i>aryzicola</i> side root	44. 5 d	80. 5 c	132. 0a	100. 0b

1) 表中数据为 3 个重复的平均数,同行数字后面字母相同者,经邓肯氏检验(P=0.05)差异不显著

3 讨论

在自然生态系统中,化感作用被环境因素所影 通常来自于不同资源的化感物质成分是相当复

杂的,化感作用决定于所有化感成分之间的作用. 根据试验结果可知: ρ (干物质)为 $0.002 \sim 0.01$ g/mL 范围内的飞机草乙醇提取物,对受试植物小白菜具有一定的促进作用,在大田生产中如果用乙醇提取物作为保护剂,在该浓度范围内对小白菜是安全的,并可能使其增产. 在较高浓度时,有可能抑制其生长. 因此飞机草乙醇提取物作为植物保护剂使用时,应控制浓度范围,把防治病虫害与生长抑制一促进作用综合考虑. 另外,根据植物源农药持效期短的特点,如果在蔬菜移栽前 1 周左右用 ρ (干物质) \geq 0.1 g/mL的飞机草乙醇提取物进行土壤处理,可能达到抑制某些种类杂草生长的目的.

从植物中提取的有效化感物质直接应用于生产实际是不太现实的,因为化感物质含量少,提取困难,获得的量也非常少,直接施用成本也太高.因此,研究飞机草的化感作用,在提取、分离和鉴定化感物质的基础上,人工模拟合成化感作用较强物质或对一些化感物质进行结构修饰,将有可能开发出新型除草剂.飞机草作为植物保护剂的有效成分、对害虫的生物活性、作用机理、化感作用的有效成分等将另

文报道.

参考文献:

- [1] 马永清. 杂草间的化感作用及其在杂草生防中的应用 [1]. 生态学杂志, 1991, 10(5): 9-10.
- [3] 丁智慧, 张学镅, 刘吉开, 等. 飞机草中的化学成分[J]. 天然产物研究与开发, 2001, 13(5): 22-24.
- [4] 冼继东. 非嗜食植物次生化合物在植物免害中的作用 [D]. 广州. 华南农业大学资源环境学院, 2001.
- [5] 曾任森、骆世明、香茅、胜红蓟和三叶鬼针植物他感作用的研究[J]、华南农业大学学报、1993、14(4):8-14.
- [6] 谷文祥,何庭玉,施月红. 苦槛蓝化感作用的初步研究 [J]. 热带作物学报, 1998, 19(增刊): 79—82.
- [7] 刘 伟, 侯任昭, 叶 蕙, 等. 五爪金龙的化感作用 [1]. 华南农业大学学报, 1997, 18(2): 119—120, 122.
- [8] ANGIRAS N N, SINGH S D, SINGH C M. Allelopathic effects of weeds on germination and seedling growth of maize and soybean [J]. Indian J Weed Sci. 1988, 20(2): 82—87.
- [9] MENGES R.M. Alleloathic effects of Amaranth (Amaranthus palmeni) on seeding growth [J]. Weed Science, 1988, 36: 325-328, 221.

Studies on the Allelopathic Effects of Chromolaena odoratum

HE Yan-biao¹, ZHANG Mao-xin¹, HE Ting-yu², GU Wen-xiang²
(1 College of Resources and Environment, South China Agric. Univ., Guangzhou 510642, China;
2 College of Sciences South China Agric. Univ., Guangzhou 510642, China)

Abstract: To evaluate of the perspective of application of *Chromolaena odoratum* L. in plant protection, here was a study on the allelopathic effects of *Chromolaena odoratum* L.. The results indicated the 0.1 g/mL alcohol extracts from *Chromolaena odoratum* L. inhibitory effects on the germination, seedling growth and root's growth of *Brassicae paradninensis*, and *Brassica chinensis*, and *Brassica perkinensis* et. al., but 0.01 and 0.002 g/mL alcohol extracts showed someway stimulating effects on several seedling growth.

Key words: Chromolaena odoratum L.; allelopathic effects; pestcidable plant

【责任编辑 李晓卉】