水肥耦合对丘陵半干旱区春小麦产量的影响

杜尧东1, 刘作新2

(1 广州热带海洋气象 研究所, 广东 广州 510080; 2 中国科学院 沈阳应用生态研究所, 辽宁 沈阳 110016)

摘要: 在旱棚控制供水条件下, 对丘陵半干旱区氮(N)、磷(P)、水(W) 及其耦合作用的产量效应进行了3年定位试 验. 结果表明, 供水不足时, 水分是影响春小麦产量的主导因素; 而供水充足时, N 肥对产量的影响作用更敏感. N、 P、W 3 个单因素对春小麦均有明显的增产作用,而且符合报酬递减率, N、W 之间存在正耦合效应,供水不足时,过 多施用 N 肥易加剧作物的干旱胁迫作用: N、P 之间表现为负交互效应。低 P 高 N 同样能取得较高产量: P、W 之间 表现为负交互作用,缺水时增施 P 肥可提高春小麦的抗旱能力,通过计算机模拟 寻优,得出了丘陵半干旱区春小麦 水肥管理优化方案.

关键词: 水肥耦合: 丘陵半干旱区: 褐土: 春小麦: 产量

中图分类号·S512 12 文献标识码: A

水、肥是作物生产的物质条件,也是最容易人为 调控的2个因素. 因此, 人们对水分与作物、肥料与 作物之间的相互关系进行了大量研究. 由于土壤水 分和养分常常密切而复杂地联系在一起,因此,水分 和养分的协同关系早就引起国外学者的重视[1]. 20 世纪 90 年代以来, 我国学者着重对黄土高原和华北 平原农田水肥耦合效应进行了研究,提出了不同类 型旱地优化水肥管理方案[23]. 我国北方丘陵半干 旱区地处东北林区向内蒙古草原及华北平原的过渡 地带,为典型的生态脆弱区,该区不仅是未来我国重 要的粮食和畜牧产品基地之一,亦是华北及其以南 地区的北方门户和生态屏障. 因此, 自"七五"以来, 该地区一直被列为国家旱农重点攻关试验示范区. 但以前的研究主要集中在农田的水分状况或肥料效 应^{4, 9},对水肥之间的耦合效应研究较少,而在于旱 半干旱地区,水分不足和土地瘠薄是提高作物产量 和水分利用效率的主要限制因素,因此水肥协同关 系的研究意义更为重要. 本文旨在通过分析丘陵半 干旱区春小麦水肥耦合条件下的产量效应,提出优 化的水肥管理方案,为该类型区提高肥料利用率和 水分生产效率,实现春小麦稳定高产提供科学依据 和技术指导.

材料与方法 1

试验于 1997~1999 年在辽宁省西部的喀左县农 业示范场进行. 地理纬度 41°05′N, 119°43′E, 属典型 的斤陵半干旱区, 年平均降水量 481 mm, 其中春小 文章编号: 1001-411X(2003)01-0008-05

麦生育期间降水量只有 180.1 mm, 远远不能满足春 小麦生长发育的需要. 年平均气温 8.3℃, 最高(7 月)为 24.1 $^{\circ}$ 最低(1月)为 $^{\circ}$ 10.5 $^{\circ}$. 土壤为褐土, 质地为中-重壤土,耕层土壤密度 1. 15 g °cm⁻³, 有机 质 18.4 g°kg⁻¹, 碱解氮 40.5 mg°kg⁻¹, 速效磷 14.0 $\text{mg } ^{\circ}\text{kg}^{-1}$.

试验采用氮(N)、磷(P)、水(W)三因素五水平 312-D 最优饱和设计[6], 共 12 个处理, 3 次重复, 随机 排列,各试验因子编码水平及施肥、灌水量列干 表 1. 1997、1998 年试验在旱棚控制降雨条件下进 行, 1999年未控制降雨, 春小麦生育期间的 175.9 mm 降雨计入实际供水量. 春小麦品种为辽春 10 号, 3 月下旬播种,7月上中旬收获.水量分别在播种后、 拔节期、抽穗期和灌浆期分4次平均灌入.磷肥做基 肥1次施入, 氮肥分基肥与拔节期追肥2次施入.

结果与分析

2.1 春小麦产量回归模型

对产量与 $N(X_1)$ 、 $P(X_2)$ 和 $W(X_3)$ 三因素进行回 归模拟,得到 1997、1998 和 1999 年春小麦产量回归 模型分别为:

 $Y = 3 \cdot 146.27 + 69.55X_1 + 161.18X_2 + 498.66X_3 -$ 53. $01X_1^2 - 156.24X_2^2 + 30.58X_3^2 - 84.38X_1X_2 +$ 239. $69X_1X_3 - 16.95X_2X_3$:

 $Y = 3436.52 + 48.66X_1 + 264.78X_2 + 406.39X_3 -$ 125. $60X_1^2 - 85. 37X_2^2 - 76.95X_3^2 - 26.64X_1X_2 +$ 25. $81X_1X_3 - 38. 67X_2X_3$;

表 1	试验因子	乃编码水	亚结构	45 『车
42 I	1777 200 1221	/X S/HH 11-1/1/		ᄮ

Tab. 1	Structural	matrix	of	experiment experiment	factors an	d coded	levels
--------	------------	--------	----	------------------------------	------------	---------	--------

处理 treatments —		试验设计矩阵1)		物料用量 ²⁾ material quantity				
	exp	oeriment design mat	ix					
	X_1	X_2	<i>X</i> ₃	$N/(kg^{\circ}hm^{-2})$	P/(kg°hm ⁻²)	W ₁ / mm	W ₂ / mm	
1	0	0	2	225	90	255	360	
2	0	0	-2	225	90	45	45	
3	-1.414	-1.414	1	66	27	202.5	281. 25	
4	1.414	-1.414	1	384	27	202.5	281. 25	
5	-1.414	1.414	1	66	153	202.5	281. 25	
6	1.414	1.414	1	384	153	202.5	281. 25	
7	2	0	-1	450	90	97.5	123. 75	
8	-2	0	— 1	0	90	97.5	123. 75	
9	0	2	— 1	225	180	97.5	123. 75	
10	0	-2	-1	225	0	97.5	123. 75	
11	0	0	0	225	90	150	202. 5	
12	-2	-2	-2	0	0	45	45	

1) X₁, X₂, X₃ 分别为 N, P, W 的因子水平编码; 2) W₁ 为 1997 年的供水量, W₂ 为 1998, 1999 年的供水量

 $Y = 5519.03 + 545.28X_1 + 249.47X_2 + 492.19X_3 - 381.17X_1^2 - 179.67X_2^2 + 167.31X_3^2 - 10.42X_1X_2 - 235.97X_1X_3 - 146.37X_2X_3$

统计检验表明, 3 年回归模型的 F 值分别为 19. 19、15. 21 和 54. 94、均达极显著水平,能反映产量与 N、P、W 的关系.

表 2 中各项回归系数的 t 检验结果表明,一次项回归系数 $P(X_2)$ 和 $W(X_3)$ 3 年均达显著水平,N

 (X_1) 在 1999 年也达显著水平,二次项 X_1^2 有 2 年 (1998、1999 年)、 X_2^2 有 2 年 (1997、1999 年)、 X_3^2 有 1 年 (1999 年)达显著水平,表明 N、P、W 对春小麦产量均有较大影响。在交互项中, X_1X_3 有 2 年 (1997、1999 年)达极显著水平, X_2X_3 有 1 年 (1999 年)达显著水平,而 X_1X_2 3 年都未达显著水平,说明 N、W 的交互作用最强, N、P 的交互作用最弱, P、W 交互作用居中.

表 2 产量模型回归系数 t 检验

Tab. 2 t-test results of regression coefficients in yield models

年份 year	t_0	t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8	t ₉
1997	9. 237 **	0.816	1.893 *	5. 856 **	-0.635	- 2 . 323 *	0. 293	- 0. 991	2. 815 * *	— 0. 199
1998	15. 211 **	0.606	3. 295 **	5. 058 **	$-$ 1.595 *	— 1. 084	— 0 . 781	− 0 . 332	0. 321	— 0 . 481
1999	18. 548 **	7.330 **	3.354 **	6. 616 **	$-$ 5. 230 *	*- 3. 058 *	* 1. 834 *	- 0. 140 -	- 3 . 172 * *	$-$ 1. 968 *

2.2 试验因素效应分析

2.2.2 单因素效应 除 1997 年由于灌水量偏低, 产量模型中, W 二次项 X_3^2 的系数为正值外, 3 年产量模

型中 $N \times P$ 二次项 $X_1^2 \times X_2^2$ 以及 1998、1999 年模型中 W 二次项 X_3^2 的系数均为负值,说明春小麦产量随着 $N \times P$ 施用量和灌水量的增加呈现出一条开口向下的 抛物线变化, $N \times P$ 和 W 的投入符合报酬递减率.

N、P、W 边际产量(\bigcirc y/ \bigcirc x_i, i = 1, 2, 3) 变化规律的分析表明, 1997、1998、1999 年的 N 边际产量分别为: $Y_{N'} = -106.02X + 69.553$ 、 $Y_{N'} = -251.2X + 48.657$ 、 $Y_{N'} = -763.54X + 545.285$ (图 1a); P 边际产量分别为 $Y_{p'} = -312.48X + 161.177$ 、 $Y_{p'} = -170.75X + 264.783$ 、 $Y_{p'} = -359.34X + 249.469$ (图 1b). 除 1997 年 W 外,各因素随着因素水平的增加,边际产量均呈现递减的趋势,在较高水平时,其增产报酬率降低,投入成本增大。N 边际产量的斜率 1999

年远较1997、1998年为大,说明随着灌水量的增加,N 对春小麦产量的影响程度增大,而随着灌水量的增 加, P 对产量的影响较 N 小得多.

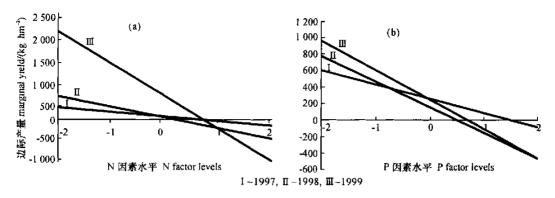


图 1 N、P 因素的边际产量

Fig. 1 Marginal yields of N and P

2.2.3 因素间耦合效应分析 由产量模型可知,1997和1998年N、W 交互项 X_1X_3 的系数为正值,表明N、W 之间具有重要正交互效应,二者可以相互促进,水分是发挥N 肥肥效的重要条件;而1999年N、W 交互项 X_1X_3 系数为负值,说明当水分满足作物生长发育的需要时,N 因子对作物产量的影响十分敏感,成为影响产量的主导因素。

当磷肥固定于 0 水平时,春小麦最高产量点为 N 与 W 均为+2 的水平,而最低点却不在 N 和 W 均为-2 的水平,而是在 N 、W 分别为+2、-2 的水平(图 2a).随着实际供水量增加,N 对春小麦产量的影响更敏感,高 W 高 N 会导致产量降低(图 2b).

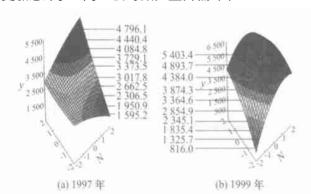


图 2 N、W 两因素间的交互耦合作用(P 取 0 水平) Fig. 2 Interaction between N and W(P= 0)

3 年中 N、P 交互项 X_1X_2 的系数均为负值,表明 N、P 之间存在负交互效应. 图 3a 表明,当灌水量固定于 0 水平时,春小麦产量最低点为 N 和 P 施用量为低水平,只有 N、P 两因素合理配合,方能取得较高产量(1997 年). 而当 N 施用为低水平,而 P 施用为高水平时,春小麦产量很低;当 P 施用量为低水平,N 用量为高水平时,也能取得较高的产量(图 3b).

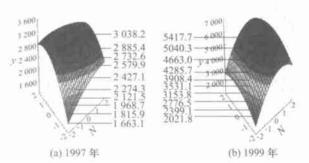


图 3 N、P 两因素间的交互耦合作用(W 取 0 水平) Fig. 3 Interaction between N and P (W= 0)

3 年中 $P \times W$ 交互项 $X_2 X_3$ 的系数均为负值,说明 $P \times W$ 之间存在负的交互作用,两者之间具有一定的相互替代作用,缺水时增施 P 肥可提高春小麦的抗旱能力,而提高供水量可提高土壤中 P 素的有效性. 但从图 4 可以看出,随着 N 肥用量的提高,且当土壤水分过度缺乏时,这种替代效应不明显.

2.3 不同产量水平的水肥管理优化方案

以 3 年春小麦产量回归模型为基础,通过计算机模拟寻优,并对水肥因素取值频率分布进行分析,选出产量在3 000 kg $^{\circ}$ hm⁻²以上和4 500 kg $^{\circ}$ hm⁻²以上的水肥管理优化方案分别为: N 200.3 ~ 277.9 kg $^{\circ}$ hm⁻²、P 106.7 ~ 134.6 kg $^{\circ}$ hm⁻²、W 264.7 ~ 303.3 mm 和 N 275.3 ~ 331.9 kg $^{\circ}$ hm⁻²、P 93.6 ~ 124.2 kg $^{\circ}$ hm⁻²、W 378.4 ~ 435.1 mm. 产量 4 500 kg $^{\circ}$ hm⁻²以上水肥管理优化方案的计算步骤列于表 3. 对比分析 2 个产量水平的 N、P、W 投入量可以看出,供水不足时,宜适当提高 P 肥的施用,增强作物的抗旱能力来获得较高产量;但在供水充足时,宜适当增加 N 肥的施用,以充分发挥水肥之间的互馈协同作用,实现增产增收.

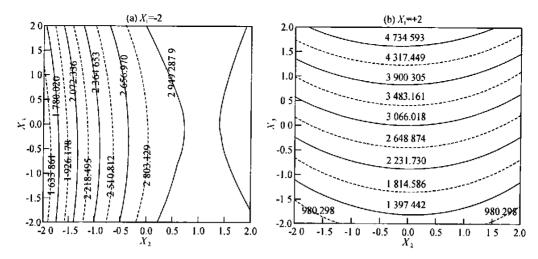


图 4 不同 N 水平下 $P(X_2)$ 、 $W(X_3)$ 交互耦合效应等产线(1997)

Fig. 4 Equal yield lines of interaction between $P(X_2)$ and $W(X_3)$ under different N levels

表 3 产量 $4500 \text{ kg}^{\circ} \text{hm}^{-2}$ 以上水肥管理优化方案

Tab. 3 The optimum managements of water and fertilizer for the yield more than 4 500 kg° hm⁻²

因子水平 — factor levels ¹⁾	X_1			X_2	X_3		
	次数	 频率	次数	频率	次数	频率	
	times	frequencies	times	frequencies	times	frequencies	
+2	10	0. 200	11	0. 220	12	0. 240	
+ 1. 414($+$ 1)	19	0.386	14	0. 280	13	0.260	
0	17	0.340	14	0. 280	11	0.220	
— 1 . 414(— 1)	4	0.080	7	0. 140	9	0.180	
-2	0	0.000	4	0.080	5	0.100	
\sum	50	1.000	50	1.000	50	1.000	
X	0. 70		0.42		0.36		
S_X	0. 125		0. 172		0. 185		
置信域 confidence interval	0.45~0.95		0.08~0.76		0.00~0.72		
物量用量 material quantity	275.3~33	1.9 kg°hm ⁻²	93.6~124.2 kg°hm ⁻²		378. 4~ 435. 1 mm		

1) 括号内为 X, 即 W 的因子水平

3 讨论

据 Bennett 等⁷¹ 和徐萌、山仑⁸¹ 的研究结果,当水分供应不足时,过多施用 N 肥易增加土壤溶液的浓度,降低土壤总水势,增加作物根系吸水的难度,同时也易使作物形成较大的地上部蒸腾表面积,增大作物蒸腾量和土壤耗水量,加剧作物的水分胁迫作用,从而降低作物产量. 这与本研究的结果相吻合.

在试验的第3年,低磷高氮处理同样取得了较高的产量,可能是前2年连续高量施入磷肥后的残效作用所致^[3].

据梁丽银^[9]研究,施用磷肥能提高根干质量、根长度和根系比表面积,促进根系向深层土壤下扎,增加对深层土壤水分的利用,提高作物的抗旱能力,因

此, 缺水时增施磷肥有助于春小麦增产. 本试验也得出同样的结论.

丘陵半干旱区土壤多为发育在黄土母质上的各种褐土,全钾含量在20%以上,含钾较多,不是春小麦的产量限制因素,因此本研究未对钾的效应进行考察.

参考文献:

- [1] VIETS F G. Fertilizers and the efficient use of water [J]. Adv Agron. 1962. 14; 223—264.
- [2] 李玉山. 黄土高原南部作物水肥产量效应的田间试验 [1]. 土壤学报, 1990, 27(1); 1-7.
- [3] 汪德水. 旱地农田肥水关系原理与调控技术[M]. 北京: 中国农业科技出版社, 1995. 1—50.

: [4] 王仕新, 辽西半于旱地区春小麦农田水分循环特征的

研究』. 生态学杂志, 1990, 3(3): 32-37.

- [5] 沈善敏. 农业系统中磷肥残效及磷循环研究: I 作物吸磷量、磷肥残效及土壤有效磷变化[J]. 应用生态学报, 1992, 3(2): 138—143.
- [6] 丁希泉. 农业应用回归设计[M]. 长春: 吉林科学技术 出版社, 1986. 22-38.
- [7] BENNETT J W, JONES J W, ZUR B. Interactive effects of ni-
- trogen and water stress relation of field-grown corn leaves[J].

 Agro J. 1986. 78: 273—280.
- [8] 徐 萌,山 仑. 不同土壤水分条件下无机营养对小麦物质生产和水分利用的影响[J]. 西北植物学报, 1991, 11(4): 299—308.
- [9] 梁丽银. 土壤水分和氮磷营养对小麦根系生长及水分利用的调节 J. 生态学报, 1996, 16(3): 258-264.

Effect of Water and Fertilizer Interaction on Spring Wheat Yield in Hilly Semiarid Area

DU Yao-dong¹, LIU Zuo-xin²

- (1 Guangzhou Institute of Tropical and Oceanic Meteorology, Guangzhou 510080, China;
- 2 Institute of Applied Ecology, Chinese Academy of Sciences Shenyang 110016, China)

Abstract: To study the effect of N (nitrogen), P(phosphorus), W (water) and their interaction on the spring wheat yield in hilly semiarid area, a site experiment was conducted in rain-shelter from 1997 to 1999. Results showed that as water supply was insufficient, water was the most important factor affecting the yield, whereas N was the most sensitive to yield in three factors when water supply was sufficient. The each single effect of N, P and W on yield increasing was statistically significant and coincided with the law of diminishing return. The positive interaction existed between N and W, and excessive N was prone to crop drought stress for the lack of water shortage. Negative interaction existed between N and P, and combination of low P with high N could also achieve higher yield. The negative interaction between P and W indicated that increasing P could enhance crop drought-resistant ability under the condition of water shortage. In accordance with spring wheat models, an optimum management of water and fertilizer was put forward by computer simulation optimizing.

Key words: water-fertilizer interaction; hilly semiarid area; cinnamon soil; spring wheat; yield

【责任编辑 周志红】