水稻基腐病菌的越冬与侵染途径研究

刘琼光1, 王振中1, 区伟明2, 区肇康2, 陈玉托3

(1 华南农业大学 资源环境学院,广东 广州 510642; 2 高明市农业局,广东 高明 528500; 3 广东省农业厅, 广东 广州 510500)

摘要:采用抗利富平的水稻基腐病菌株 REch7 研究了病菌的越冬存活、侵染及病菌的存在部位. 结果表明: 水稻基 腐病菌可在土壤、田水及病残体中存活,但主要越冬场所为病稻草及含病残体的土壤;病菌可以从受伤的根、茎和 叶鞘侵入,但以根系侵入为主,植株受伤对病菌侵入非常关键;侵入后1周内,病菌主要集中干根茎基部.

关键词: 水稻: 基腐病菌: 越冬: 侵入途径 中图分类号: S432 4 文献标识码: A

水稻细菌性基腐病(Erwinia chrysantheni pv. zeae)是近年来广东水稻上一种新病害,该病在我国 南方一些省份局部地区不同程度地发生,1995年在 佛山地区爆发成灾,造成了巨大的经济损失,有关病 菌的致病性及生物学特性已有研究报道[1],但对该 病菌的越冬和侵染规律报道较少,本文主要报道这 些方面的研究结果,

材料与方法

1.1 病菌越冬场所

根据 Weller 等^{2]} 方法在利福平平板上筛选具有 抗利福平的水稻基腐菌株 REch7. 选择直径为 20 cm 的盆钵,钵内各装有5kg不同类型的土壤:(1)菜园 土+稻秆:(2)菜园土:(3)水稻土+稻秆:(4)水稻 土; (5)田水; (6)病田土.以上处理分别接种培养 24 h、浓度为 $1 \times 10^{10} \text{ mL}^{-1}$ 水稻基腐病菌 REch7 菌悬 液,每钵 30 mL, 定期加足水, 使土壤保持湿润. (7)病 稻草: 晚稻抽穗期注射 REch7 菌液,将发病植株置于 网室中.

接种时间为 2000 年 12 月 8 日, 于 2001 年 3 月 24 日用 300 μg/mL 利福平培养基回收分离 REch7 菌,并同时采用富集分离[3].

1.2 病菌侵入途径

供试菌种为抗利福平菌株 REch7, 感病水稻品种 为特籼 13 的健康秧苗. 水稻秧苗按以下处理方法接 种, 盆栽: A. 直播病土、秧苗伤根: B. 直播无病土、伤 根接种; C. 直播病土、针刺茎基部; D. 直播无病土、 剪叶后喷雾接种: E. 直播无病土、淋菌不伤根: F.

文章编号: 1001-411X(2003)01-0024-03

剪根后插植、盆土先接菌: G. 根浸菌液后, 扦植; H. 秧苗带土移栽(抛秧): I. 对照(CK), 剪根浸清水并 栽干无病土. 各处理 30 株菌, 菌液浓度 $9 \times 10^8 \, \text{mL}^{-1}$, 接种后(或移栽后)1周调查发病情况,对未发病植株 采用 300 /¹g/mL 利福平平板分离,如果分离不出病 菌, 先富集, 再用利福平平板分离.

1.3 病菌侵入后在植株体内存在的部位

供试菌株为抗利福平 REch7 菌株, 水稻品种为 20 日秧龄的特籼 13 水稻秧苗. 采用浸根接种法, 菌 浓度 $9 \times 10^8 \text{ mL}^{-1}$, 浸 15 min, 移栽于消毒盆钵泥土 中,分别于1、2和7d取秧苗的根、根茎、叶鞘、叶、2 cm 以上茎等部位表面消毒后, 捣碎, 用 $300 \,\mu_{\rm g/mL}$ 利 福平平板分离,如直接分离不出,先采用富集方法, 再用利福平平板分离.

试验结果

2.1 病菌越冬场所

病菌越冬后,第2年春分别取各处理土壤(或病 残体)10 g分离,结果(表 1)表明,从含有稻秆和病残 体的土壤或病组织中均可直接分离到病菌,但数量 不高, 为 $1 \times 10^2 \sim 2.5 \times 10^3 \,\mathrm{mL}^{-1}$. 其他处理未能直接 分离到病菌,但富集方法可分离到,且菌量为菜园土 >病田士>水稻土和田水,说明病菌主要在含有病 残体的土壤中越冬,本研究还发现,病菌在病残体上 至少可存活 3 个月以上.

2.2 病菌侵入途径

不同方法接种水稻秧苗1周后,发病情况及病 菌回收情况(表2)表明:剪根、浸根,以及根茎基部

表 1 不同越冬场所病菌分离情 \mathcal{L}^{1} (\mathbf{mL}^{-1})

Tab. 1 Isolation REch7 from different overwinter soils

越冬场所	直接分离	富集分离	
overwinter places	direct isolation	enriching isolation	
菜园土+稻秆 vegetable farm soil with	straw 1×10^2		
菜园土 vegetable farm soil	_	++++	
稻土+稻秆 rice soil & straw	3×10^{2}		
水稻土 rice soil	_	+	
田水 rice field water	_	+	
病田土 diseased soil	_	++	
病稻草 diseased rice straw	2.5×10^{3}		

1)"一"表示分离不到病菌;"十"、"++"和"+++"表示能分离到病菌,并且菌量逐渐增多.

针刺,发病严重;直播田,淋菌及秧苗带土移栽(抛秧),由于伤根较少,病害较轻或不发生,并且直接从这些组织中分离不到病菌,由此证明,病菌主要以根系侵入为主,茎基部受伤,病菌也容易侵入.

2.3 病菌侵入后在植株体内的存在部位

秧苗浸根接菌 1.2 和 7 d 后, 取不同部位的组织分离, 结果见表 3. 根和 1.5 cm 以下茎可以直接分离到病菌, 而 2 cm 以上茎和叶片组织中则分离不到病菌.

表 2 不同接种方法水稻发病及病菌分离情况1)

Tab. 2 Occurrence of rice foot rot in different inoculation and REch7 isolation from seedlings inoculated in different ways

拉孙子汁	发病率	直接分离	富集分离
接种方法 inoculation methods	occurrence of	direct	enriching
moculation methods	disease/ $\%$	isolation	isolation
直播病土,秧苗伤根 sowing in the diseased soil with roots wounded	0	_	+
直播无病土,伤根接菌 sowing in aseptic soil,inoculation wounded noots	6. 67		
直播病土,针刺茎基部 sowing in the diseased soil with the base of stems wounded	78. 26		
叶片喷雾接菌 spraying REch7 suspensions on leaves	0	_	_
直播无病土 淋菌不伤根 soving in the aseptic soils, drenching REch7 suspension, with noots no wounded	0	_	_
剪根后移栽。盆先接菌 wounding root,planting in inoculated soils	81. 25		
浸根接种 roots dipping in suspensions	75		
秧苗带土移栽(不伤根)sædlings planting with soils	0	_	_
对照, 不接菌, 浸清水 control no inoculation	0	_	_

1)"一"表示分离不到病菌:"十"表示能分离到病菌.

表 3 病菌侵入后在植株体内的存在部位1)

Tab. 3 The places where pathogens are after plants infected (g^{-1})

分离时间 isolation time	根 roots	1.5 cm 以下茎 below 1.5 cm stems	2 cm 以上茎 up 2 cm stem	基部叶鞘 sheaths in the base	叶片 leaves	健康茎基部 healthy stems
1 d	1×10 ⁴	8. 1×10 ⁵	_	+	_	_
2 d	2×10^3	4.2×10^{6}	_	+	_	_
7 d	5×10^2	5.6×10^{5}	_	+	_	_

1)"一":表示直接分离不到病菌,富集方法也分离不到病菌;"十":表示直接分离不到病菌,富集方法可分离到病菌

3 讨论

本研究采用富集技术、选择性培养基和抗利富平菌株、研究了水稻基腐病菌的越冬存活和病菌侵入途径、这些技术是在植物病原生态学研究中发展和完善起来的,其灵敏度、检出率和有效性均较高^{2.3}。

有关水稻细菌性基腐病的越冬存活问题,研究较少,本研究结果认为水稻基腐病主要越冬场所为病残体和病稻草,基本支持姚革等^[4]观点,同时也发现,在含稻草的土壤 106 d 可直接分离到病菌,无稻

草的土壤和田水 106 d 后, 用直接分离的方法不能分离到病菌, 但用富集方法可分离到. 因此, 在种子播种或秧苗扦秧后, 基腐病菌可在水稻根系大量富集, 如果根系受伤, 病菌则可侵入为害. 这一研究结果对水稻基腐病的病害循环和初侵染是非常重要的.

关于水稻基腐病菌的侵入途径, Goto^[5] 和洪剑鸣^{6]} 等认为针刺和注射能引起田间症状, 喷雾接种能致病, 但症状轻微. 王金生^[7] 等认为病菌主要从伤口侵入. 本研究结果与王金生等基本一致, 即病菌主要从根系伤口侵入为主, 但与前人不同的是, 叶片喷雾接种不发病, 说明病菌不能从叶片水孔和气孔侵

入. 另一方面, 笔者认为伤口对水稻基腐病菌侵入非常关键, 植株受伤越大, 侵入越容易, 发病越重; 植株受伤轻, 则发病轻. 如本研究中直播和秧苗带土移栽, 伤根少, 植株不表现症状, 而且直接从秧苗根系中也分离不到病菌. 而直播于盆钵的 20 d 水稻秧龄, 直接淋菌不伤根. 则基腐病不发生, 用直接和富集方法均未能从组织中分离到病菌. 对于水稻插秧移栽, 根、叶鞘以及茎受伤, 易发生基腐病, 特别是根颈基部受伤, 基腐病发病最重. 这些结果进一步丰富了前人的研究, 对于病害的再侵染和防治具有重要的意义.

秧苗浸根接菌 1、2 和 7 d 后的不同部位分离结果表明:病菌侵入后先分布在根内,然后向根颈和茎基部转移,病菌主要集中于茎基部,1 周后 2 cm 以上的茎、叶等组织用富集的方法分离不到病菌,但茎部叶鞘可富集到,这些结果与田间的症状相一致.一些品种在移栽后 1 周开始发病,很可能是由于拔秧移栽时造成茎基部和根受伤,而后土壤或田水中的病原菌从伤口侵入,由于菊欧氏菌分泌果胶裂解酶的作用,使植物组织崩溃分解,因而腐烂并有臭味,植株很快死亡,病菌未能扩展到茎上部和叶.

参考文献:

- [1] 刘琼光, 曾宪铭, 广东水稻细菌性基腐病菌的致病性 及生物学特性研究[J]. 华南农业大学学报, 1999, 20 (1); 1-4.
- [2] WELLER D M, SAETTLER A W. Riofampin-resistant Xanthomnas phaseoli var. fiscans and X. phaseoli: Tool for field study of bean blight bacteria [J]. Phytopathol. 1978, 68: 778 — 781.
- [3] MENELEY J C. STANGHELLINI M E. Isolation of soft rot Erwinia spp from agricultural soils using enrichment technique
 [J]. Phytopathol. 1976, 66; 369—370.
- [4] 姚 革,王金生,方中达.水稻细菌性基腐病原菌的越 冬与存活 J.南京农业大学学报,1994,17(增刊):58 -62.
- [5] GOTO M. Dissemination of Erwinia chrysanthemi, the causal organism of bacterial foot not of rick[J]. Plant Disease Reporter 1979, 63: 100—103.
- [6] 洪剑鸣. 水稻细菌性基腐病病原菌致病变种的研究 [J]. 浙江农业大学学报, 1986, 12(1): 63-67.
- [7] 王金生,杨晓云,方中达.水稻细菌性基腐病的侵染规律和病理解剖学研究[J].植物病理学报,1987,17(2):79-83.

Overwintering and Infection of Erwinia chrysanthemi pv. zeae

LIU Qiong-guang¹, WANG Zhen-zhong¹, OU Wei-ming², OU Zhao-kang², CHEN Yu-tou³
(1 College of Resource and Environment, South China Agric. Univ. Guangzhou 510642, China;
2 Gaoming Agric. Bureau, Gaoming 528500, China; 3 Guangdong Agric. Department, Guangzhou 510500, China)

Abstract: The studies of survival, overwintering, distribution in rice tissue and infection ways of *Ewinia chrysanthani* pv. zeae, the causal of rice bacterial foot rot, were conducted by the rifampin-resistant strain REch7. The results showed that the pathogen could overwinter in diseased residue of rice. The pathogen could infect rice by the way of wounded root, root-stem and leaf sheath. Wounded root of rice was important for the occurrence of the disease. After the pathogens invaded plant 7 days, they were in the place of root crown and root-stem zone.

Key words; rice; *Erwinia chrysanthemi* pv. zeae; overwintering; infection

【责任编辑 周志红】