利用统计控制方法模拟 LOGISTIC 模型

古德就,明 珂,梁广文,余明恩

(华南农业大学 昆虫生态研究室,广东 广州510642)

摘要: 提出用统计控制方法估计常量 K 值以模拟 LOGISTIC 模型. 方法是: (1) 当因变量具有由小至大逐渐上升至一个最大值后而下降的趋势时, 设试验中的最大值为 K 值; (2) 当因变量具有由小至大逐渐上升的趋势时, 设 K 值等于试验的最大值乘以(1+5%). 根据桃蚜和优姬蜂的试验数据的趋势估计 K 值并以 SAS 系统软件模拟 LOGISTIC 曲线. 得到精确度极高的模型.

关键词: LOGISTIC 模型; 统计控制; 模拟; 桃蚜; 优姬蜂中图分类号: Q968 1 文献标识码: A

人们在防治害虫的过程中,通过利用各种观察和测量方法,掌握害虫的发生和发展信息,从而利用数学方法把害虫的信息模拟为数学模型以探索害虫发生和发展规律,为综合防治害虫提供理论依据.前人对害虫的发生、发展创造和提出了很多的数学模型[1~3].但是,事物的发生和发展是有自身的内在规律,而数学模型只是人们对自然界发生和发展规律的一种探索方法,也是表示因果关系的方式[4].我们所用以模拟的试验数据都是研究者在特定的试验条件下取得的,用此数据模拟出来的模型也只是反映出某一条件下客观事物的发展规律.因此,对模型的运用则需要一个范围的控制,在统计分析中,这个控制叫做统计控制(statistical control)[5].反过来,统计控制可以指导我们在模型模拟中对数据的处理和控制.

统计控制就是根据事物,尤其是生物的发生和 发展规律以及哲理,在一定范围内对数据作合理的 文章编号: 1001-411X (2003) 03-0033-03

控制, 并经统计检验去证明控制的效果[5.6].

LOGISTIC 模型,也叫生长发育模型,在生物学上广泛应用.模型中的常量K值的估计也是研究者感兴趣的问题.前人为了这个K值曾用了三点法 $[^{7}]$ 、搜索法 $[^{8}]$ 、尝试误差法 (trial and error) $[^{9}]$ 、对某一假定范围数值作黄金分割法 $[^{19}]$ 等方法.作者根据昆虫发育和行为的信息,利用统计控制理论进行 [IOGISTIC]模型的模拟,探索在模型模拟中参数的估计与确定.

1 模拟温度与桃蚜发育速率关系的 LOGISTIC 模型

表 1 为不同龄期桃蚜的若蚜在不同温度条件下的发育历期试验数据. 由表可见,1 龄若蚜的发育速率从 5 $^{\circ}$ 至 25 $^{\circ}$ 个都是呈现增势,但从 25 $^{\circ}$ 인到 28 $^{\circ}$ 은呈现降势. 因此,以该数据模拟 IOGISTIC 曲线是有可能的.

表 1 温度(X)对桃蚜发育历期(t)和发育速率(Y)的影响

Tab. 1 The effects of temperatures (X) on growth of M. persicae (广州 Guangzhou 1989)

发育龄期	5℃		10℃		15℃		20 °C		25℃		28℃	
stage	<i>t</i> / d	Y	<i>t</i> / d	Y	<i>t</i> / d	Y	<i>t</i> / d	Y	<i>t</i> /d	Y	<i>t</i> / d	Y
1 占令 1-instar	8. 84	0.113 1	4.08	0.245 1	2. 12	0.4717	1.66	0.6024	1. 22	0.8197	1.36	0. 735 3
2 協会 2-instar	7. 83	0.1277	4.64	0.215 5	2. 28	0.4386	1.48	0.675 7	1. 27	0.7874	1.29	0. 775 2
3 協会 3-instar	8. 43	0.1186	4.82	0.207 5	2. 52	0.3968	1.65	0.606 1	1. 42	0.7042	1.52	0. 657 9
4龄 4-instar	9. 30	0.1075	5.42	0.1845	3. 07	0.3257	2. 14	0.467 3	1. 65	0.606 1	1.76	0. 568 2

根据桃蚜在 $5 \sim 28$ [©]不同梯级温度条件下发育 历期(t)的数据, 先把 t 值转换为倒数值 Y(1/t), 即 发育速率, 用 SAS 系统 ^[1] 模拟各个龄期的温度(X) 与发育速率(Y)关系的 LOGISTIC 模型.

首先模拟 1 龄期若虫的发育速率 Y 与温度 X 关系的 LOGISTIC 模型.

从表 1 可见,在 25 °C时,桃蚜的发育速率最大,为 0.819 7,而在 28 °C时,其发育速率下降为0.735 3.假设所模拟的模型符合 IOGISTIC 曲线,则这条曲线就会有最大值(K). 从统计控制理论出发,这个最大值应在 25 °C至 28 °C之间,因为从 20 °C至 25 °C,发育速率都是增势的,至 25 °C时为最大.因此,可以假设这个最大值为 25 °C时的发育速率,即 K=0.819 7.这样,模拟出的 LOGISTIC 模型方程为: Y_1 =0.819 7/[1+exp(2.921-0.210 2X)],(R^2 =0.995 2, P<0.01).

同理,可以求得 2 龄期、3 龄期和 4 龄期的发育 速率与温度关系的 LOGISTIC 模型方程分别为:

 $Y_2 = 0.787 \text{ 4/[} 1 + \exp(3.458 \text{ 8} - 0.255 \text{ 1}X)\text{]},$ $(R^2 = 0.997 \text{ 3}, P \le 0.01);$

 $Y_3 = 0.704 \ 2/[1 + \exp(3.2127 - 0.2406X)],$ ($R^2 = 0.9969, P < 0.01);$

 $Y_4 = 0.606 \text{ 1/[} 1 + \exp(2.911.8 - 0.211.4X)],$ $(R^2 = 0.996.4, P < 0.01).$

以上所拟合的 LOGISTIC 曲线见图 1.

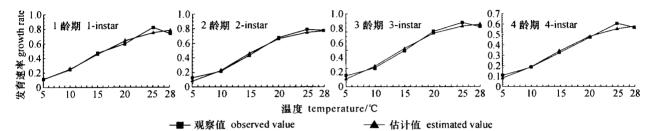


图 1 $1 \sim 4$ 龄期桃蚜的发育速率(Y) 与温度(X) 关系的 LOGISTIC 曲线

Fig. 1 The LOGISTIC curves fitted for simulation of the relationship between the growth rates of L1-to

L4-instar of peach aphid nymph and temperatures

由以上模拟的结果可见,利用桃蚜的发育速率 (Y)与温度(X)关系的数据,以试验温度对应的最大发育速率作为 K 的估计值,以模拟 LOGISTIC 模型是可行的. 经检验,模型的决定系数 (R^2) 都大于 0.98. 说明用 LOGISTIC 模型可以很好地解释桃蚜的发育速率与温度的关系.

2 模拟优姬蜂对不同密度条件下的小菜蛾幼虫的寄生数量关系的 LO-GISTIC 模型

表 2 为小菜蛾($Plutella\ xylostella$)幼虫寄生蜂优姬蜂($Diadegna\ eucerophaga$)在小菜蛾幼虫不同密度(头/搜索区,每搜索区面积为 $78.5\ cm^2$)下对幼虫寄生头数的试验数据,由此可见,随小菜蛾幼虫密度的增大,优姬蜂寄生的幼虫数也随之增大.从统计控制考虑,如果增大幼虫的密度,可能幼虫被寄生数也随之增大.但是,在单位时间内,优姬蜂的寄生数应该有一个限度,这个限度就是 $IOGISTIC\ 模型中的\ K$ 值.考虑到数据的增势,假设增加的数量在统计检验可允许的小概率水平($\alpha=0.05$),试验中的寄生数 $Y=21.2\ y$ (当密度 $Y=21.2\ y$ (当密度 $Y=21.2\ y$ (当密度 $Y=21.2\ y$ (1+5%)=22.26,以模拟 $Y=21.2\ y$ (1+5%)=22.26,以模拟 $Y=21.2\ y$ (1+5%)=22.26,以模拟 $Y=21.2\ y$ (1+5%)=

用SAS 系统[1] 模拟 IOGISTIC 模型, 其方程为:

0.981.8, P < 0.01).

其曲线模型见图 2. 说明所模拟出的 LOGISTIC 模型是很理想的, 其决定系数大于 0. 98.

表 2 优姬蜂对不同密度小菜蛾幼虫的寄生效应

Tab. 2 The effect of parasitism (Y) of D. eucerophaga on P. xylostella lavarve in different density (X)

(伦敦 London, 1991) 密度 density (X) 10 20 30 40 50 60 /(头·搜索区⁻¹) 寄生数 number of larvae 3.1 4. 2 6.9 9.9 19.9 21.2 parasited(Y)/ 头

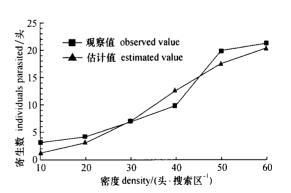


图 2 小菜蛾幼虫密度(X)与优姬蜂寄生数(Y)关系的 LO-GISTIC 曲线

Fig. 2 The LOGISTIC curve fitted for simulation of the relationship between the density of *P. plutella* larvae and the number of the larvae parasitized by *D. eucerophaga*

 $Y=22.26/[1+\exp{(3.9116-0.1045X)}]$, ($R^2=21994-2016$ China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

结论和讨论

本文用统计控制方法,根据试验数据变化规律 和昆虫种群的变化规律,通过估计K值,能很好地把 试验数据模拟为 LOGISTIC 模型, 其估计 K 值的方 法可归纳如下:

- (1) 当因变量具有由小至大逐渐上升至一个最 大值后而下降的趋势时,可以假设试验的最大值作 为 K 值, 以模拟 LOGISTIC 模型;
- (2) 当因变量具有由小至大逐渐上升的趋势时, 可以假设试验的最大值乘以(1+5%),以此值当作 K 值, 以模拟 LOGISTIC 模型;

无论是方法(1)或(2),必须对所模拟的 LOGIS-TIC 模型进行非线性回归差异性显著的检验. 以上 2 种案例中的模型的决定系数 (R^2) 都不小于 0.98, 达 到极显著的水平,

与前人 $[7^{-10}]$ 估计 LOGISTIC 模型中 K 值的方法 相比较,统计控制的方法更为简洁和直接,模型模拟 的精确度极高. 作者同样采用文献[7] 的实例数据, 根据以上提出的统计控制(2)的方法,把试验的最大 值 76.97×(1+5%)=80.8185] 作为假设 K 值, 模 拟 LOGISTIC 模型,模拟的模型为:

 $Y_A = 80.8185/[1 + \exp(9.4163 - 0.5033X_1)],$ $(R^2 = 0.9964)$

而文献[10]的方法对文献[7]的实例数据估计 的 K = 77.0572,模拟的模型为:

 $Y_B = 77.057 \, 2/[1 + \exp(10.169 \, 3 - 0.551 \, 2X_2)],$ $(R^2 = 0.9975)$

由以上模拟出的模型 YA与 YB相比较,模型模拟 的精确度基本一致. 说明作者采用统计控制方法估计 K 值以模拟 LOGISTIC 模型是简易而精确的方法.

值得注意的是,用以模拟 LOGISTIC 模型的试验 数据应该能很好地反映出试验对象的规律,并出现 试验数据的最大值. 这样,才能根据试验对象的发生 和发展趋势作出对常量 K 值的估计. 如果所模拟的 模型的决定系数 (R^2) 小于 0.98, 可以重新对 K 值估 计,直至得到满意的模拟.

参考文献:

- TAYLOR L R. Assessing and interpreting the spatial distribution on insect population[J]. Annual Review of Entomology, 1984, 29: 321-357.
- [2] 古德就,余明恩,候任环,等.农药亚致死剂量对菜蚜 茧蜂搜索行为影响的研究[]]. 生态学报, 1991, 11(4): 324-330.
- [3] 庞雄飞,梁广文. 害虫种群系统的控制[M]. 广州:广 东科学出版社 1995. 87-125.
- [4] 古德就. 相关和通径分析[]]. 自然杂志, 1990, 13(12); 808 - 813.
- [5] SOKAL R R. Biometry M. New York; W H Freeman, 1981. 561-594.
- MASON R L, GUNST R F. Statistical design & analysis of experiments M . New York: John Whiley & Sons, 1989. 41-
- 邬祥光. 昆虫生态学的常用数学分析方法(修正版) [7] [M]. 北京: 农业出版社, 1985. 650-655.
- 周赛花. 逻辑斯谛方程中参数的估计[〗. 数理统计与 [8] 管理, 1992, 11(5): 32-35.
- [9] STINNER R E, GUTIERREZ A P, BUTLER G D. An algorithm for temperature-dependent growth rate simulation[J]. Can Ent, 1974, 106: 519-524.
- [10] 楠. LOGISTIC 曲线参数的一种最佳估计方法[]] . 生物数学学报, 1994, 9(3): 148-152.
- 军. SAS for Windows 统计分析系统教程 [M]. 北京: 电子工业出版社, 2001. 321-334.

Parameter K-Value Estimation for LOGISTIC Model by Statistic Control

GU De-jiu, MING Ke, LIANG Guang-wen, YU Ming-gen (Laboratory of Insect Ecology, South China Agric. Univ., Guangzhou 510642, China)

Abstract: The authors present the new trial & error method of statistic control to estimate the parameter K-value for LO-GISTIC model simulation fitted by SAS system by utility of data from the experiment of peach aphid Mysuz persiane and ichneumon Diadegma eucerophaga. The methods for K-value estimation were concluded: (1) If the dependent variable was in ascending to a maximum value and then decending, let the K-value equal the maximum; (2) If the dependent variable was in ascending to a maximum value, let the K-value equal the maximum times $(1\pm5\%)$. The results showed that the LOGISTIC models fitted were of high accurate with the coefficients of determination (R^2) not less than 0.98, and this accuracy seemed sufficient for the most LOGISTIC model simulation.

Key words: IOGSTIC model; statistical control; simulation; Mysiz persicae; Diadegma eucerophaga