芥菜农杆菌高效遗传转化体系初步建立

曹必好1, 雷建军1, 宋洪元2, 秦耀国1

(1 华南农业大学 园艺生物技术所,广东 广州510642; 2 西南农业大学 园艺系, 重庆 400716)

摘要: 采用农杆菌导入法, 探讨了影响芥菜农杆菌遗传转化效率的因素, 优化了参数, 初步建立了以 MS+6-BA(2.0 mg/L)+NAA(0.2 mg/L)为分化培养基, 预培养时间3或4点共培养时间4点农杆菌浓度 D60 m为0.5 浸菌时间10 min 筛选压 Kan 为 25 mg/L 的遗传转化体系.

关键词: 芥菜: 遗传转化: 农杆菌

中图分类号: 0785

文献标识码: A

芥菜(Brassica juncea Coss.)是十字花科芸薹属一 种重要蔬菜作物,在中国栽培历史悠久,不但是广大 消费者所喜爱的一种重要蔬菜,而且还是我国一种 重要的加工出口创汇蔬菜. 转基因技术作为现代生 物技术中改良农作物品质有效手段之一,其在农业 生产中具有广泛的应用前景 1. 有关十字花科作物 开展转基因的研究报道较多,大多数研究者主要采 用农杆菌导入法,采用此法成功的关键是如何建立 一个稳定高效的遗传转化系统[23]. 到目前为止,已 经在白菜[4] 高频再生体系,甘蓝[5~7] 和甘蓝型油 菜^{7,8}等作物的高效稳定遗传转化体系建立等方面 讲行了探讨,为这些作物开展转基因的研究构筑了 很好的平台. 而国内外有关芥菜遗传转化研究的报 道比较少见,本试验在借鉴前人研究的基础上,主要 探讨了影响芥菜农杆菌高效遗传转化的因素,旨在 建立芥菜农杆菌高效遗传转化体系, 为以后开展芥 菜转基因研究奠定基础.

材料与方法

1.1 植物材料

茎瘤芥: 草腰子(购干重庆科光种苗公司).

1.2 菌种与质粒

菌种:农杆菌(Agrobacterium tumefacciens) LBA4404 含质粒 pBI 121 (带有 NPT-II基因和 Tu R2 基 因).

1.3 主要培养基

LB; YEB; 分化培养基: MS+BA (2.0 mg/L)+ NAA(0.2 mg/L); 筛选培养基: MS+BA(2.0 mg/L)+ NAA(0. 2 mg/L) + Carb (500 mg/L) + Kan (25 mg/L)+AgNO₃(4.0 mg/L).

文章编号: 1001-411X (2003) 04-0048-04

1.4 茎瘤芥无菌苗的培养

挑选种子,去除瘪瘦种子及杂质,用 $\varphi=75\%$ 乙 醇消毒 30 s, 再用 1 g/L HgCl2 消毒 10 min, 无菌水洗 4~5次,播种干 MS 培养基上,25 [℃]下培养至发芽. 下胚轴进行分化培养,得到不定芽.

1.5 外植体对抗生素的敏感性试验

将无菌幼苗的下胚轴、子叶, 25 d 苗龄的幼苗真 叶分别接种干含不同浓度的 Kan、Cef、Carb 等抗生素 的 MS+BA (2.0 mg/L)+NAA (0.2 mg/L) 培养基上, 以检验各抗生素对外植体分化率的影响.

1.6 茎瘤芥外植体的遗传转化

- (1) 农杆菌的准备: 挑取含有 pBI121 重组质粒 的农杆菌 LBA4404 单菌落,接种于 5 mL 含 Str (125 mg/L)和 Kan (50 mg/L)的液体 YEB 培养基中, 28 ℃ 下 200 r/min 振荡培养活化农杆菌. 取过夜培养活化 的农杆菌按 1 50 比例转接到含有 Str (125 mg/L)和 Kan (50 mg/L)的液体 YEB 培养基中,继续培养 1~2 d, 将培养物于 4000 r/ min 离心 7~8 min, 收集菌体, 用液体 MS 培养基按不同的比例稀释菌体至 D_{600} m 值为 0. 3、0. 5、1. 0、1. 5, 比较农杆菌不同浸泡浓度对 外植体转化的影响.
- (2) 外植体的预培养、感菌和共培养: 切取 6 d 苗龄幼苗下胚轴、子叶和 25 d 苗龄幼苗的真叶外植 体, 置于分化培养基上, 暗处预培养 0、1、2、3、4 d, 比 较不同预培养处理对外植体转化的影响.

将预培养的外植体投入预先准备好的农杆菌液 中、室温下不断摇动、使外植体与农杆菌充分接触、 浸泡 10、15、20、30 min, 比较不同浸菌时间对外植体 的转化影响.

取出外植体,置于干燥无菌滤纸上吸去多余的

菌液,转入分化培养基上,共培养 0、2、3、4、5 d, 比较不同共培养处理对外植体的转化影响.

1.7 转化植株的鉴定 对得到的转基因植株进行 PCR 鉴定.

2 结果与分析

2.1 抗生素对诱导不定芽的影响

(1) 头孢霉素, 羧苄青霉素对诱导不定芽的影响: 头孢霉素、羧苄青霉素可以有效抑制农杆菌的生长. 将茎瘤芥无菌苗的下胚轴、子叶和真叶叶片分别置于含 500 mg/L Carb 的分化培养基上

培养, 结果(表 1)表明, Carb 对外植体的不定芽分化能力影响不大,而 Cef 明显地抑制外植体的不定芽分化,使外植体黄化. 而在生根培养基中则刚好相反,故在筛选培养过程中使用 Carb.

(2)Kan 对外植体分化的影响: 确定合适的选择压是成功进行植物遗传转化的关键因素, 选择压低时, 假转化体出现的机率多, 选择压高时, 真转化体因未能承受高的选择压而同样被抑制, 同样造成转化效率低. Kan 是双子叶植物常用的选择剂, 在转化前, 首先对茎瘤芥外植体进行 Kan 敏感性试验: 将外植体分别置于含100、50、35、30、25、20、15、10、5 mg/L

表 1 Cef. Carb 对茎瘤芥外植体不定芽分化频率的影响

Tab. 1 Effects of Cef and Carb on the bud differentiation frequencies in explant of mustard

	子叶 otyledons			下胚轴 hypootys			叶片 leaves		
抗生素 - antibiotic	个数	分化数	分化率	个数	分化数	分化率	 个数	分化数	分化率
/ $(500 \mathrm{mg}^{\circ}\mathrm{L}^{-1})$	the NO.	differentiated	differentiation	the NO.	differentiated	differentiation	the NO.	differentiated	differentiation
/ (300 mg L)	of explants	explants NO.	percentage/ ½	of explants	explants NO.	percentage/ %	of explants	explants NO.	percentage/ %
Carb	100	85.67	85.67	100	95. 00	95.00	100	83. 00	83.0
Cef	100	12.33	12.33	100	9. 67	9. 67	100	11. 33	11.33
CK	100	90.00	90.00	100	100.00	100.00	100	87. 00	87.0

等质量浓度的 Kan 分化培养基中, 25 d 后统计, 当 Kan 质量浓度为 10 mg/L 时, 外植体死亡率较低, 能进行正常的分化; 当 Kan 质量浓度高于 10 mg/L 时, 外植体的分化能力受到严重抑制, 没有不定芽的分化; 质量浓度为 15 mg/L 时, 外植体的死亡率已达55%左右, 质量浓度为 25 mg/L 时, 外植体的死亡率达95%左右, 质量浓度高于 30 mg/L 时, 外植体全部死亡. 表明高质量浓度的 Kan 对不定芽的产生和生长具有强烈的抑制作用, 见图 1. 因此, 在转化芥菜时, 选用的选择压为 25 mg/L, 可以减少假阳性出现的几率.

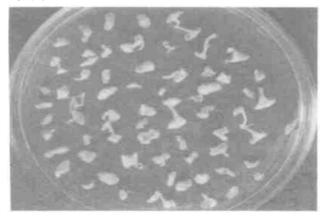


图 1 非转化子叶在 30 mg/L 选择培养基上白化死亡

Fig. 1 No transformed cotyledon of mustard died on

2.2 农杆菌菌液浓度、浸菌时间对茎瘤芥外植体抗 性愈伤组织产生的影响

在进行植物遗传转化时,农杆菌首先在外植体的伤口处附着,经过一段时间感染后,才能进入植物细胞内完成遗传转化.许多研究表明农杆菌的浓度直接影响转化效率,若浓度过高,会对外植体产生毒害作用,影响外植体的再生和分化.本试验中,对过夜培养的农杆菌先进行收集菌体,后用 MS 培养基稀释至 $D_{600\,\,\mathrm{mm}}$ 为 $0.3\,\,\mathrm{c}.0.5\,\,\mathrm{c}.1.0\,\,\mathrm{c}.1.5\,$,用不同浓度的农杆菌来感染外植体.结果发现,用 $D_{600\,\,\mathrm{mm}}$ 为 $1.0\,\,\mathrm{c}.1.5\,$ 的农杆菌浸泡外植体后,对外植体产生严重的毒害,最终导致外植体全部死亡;而 $D_{600\,\,\mathrm{mm}}$ 为 $0.3\,\,\mathrm{c}.0.5\,\,\mathrm{e}$ 的农杆菌感染外植体后,二者对外植体的影响差异不大,约有 $80\,\,\mathrm{c}$ 外植体存活,且能分化出不定芽.故转化时,选用的农杆菌浓度以 $D_{600\,\,\mathrm{mm}}=0.5\,\,\mathrm{b}$ 宜.

外植体的浸菌时间也会影响到转化结果,适当延长浸菌时间,有利于较多的农杆菌附着于外植体上,但时间过长,外植体易造成伤害,不利于外植体的再生和转化. 在本试验中,当浸菌时间超过 15 min时,外植体受伤严重(伤口是否有水浸状为准),全部死亡;当浸菌时间为 10 min 时,则受伤程度明显降低,故本试验中选用 10 min 的浸菌时间.

2.3 预培养与共培养对外植体分化和再生的影响

预培养时间亦是影响植物转基因效率的重要因

?1994-20 10 ms/L selective medium ?1994-20 10 ms/L selective medium ?1994-20 10 ms/L selective medium Mwww.cmki.net 后伤口严重 褐化, 外植体很少能分化, 预培养时间长,则伤口趋于愈合和封闭, 使农杆菌侵染效率下降. 本试验中,探讨了不同预培养处理对芥菜外植体分化效率的影响, 结果见表 2, 以预培养 3 或 4 d 外植体分化频率较高. 故以预培养 3~4 d 较为合适.

表 2 不同预培养时间对芥菜外植体分化频率的影响

Tab 2 Effects of pre-culture time on the differentiation frequencies in explants of mustard

t(预培养 pre-	分化率 differentiation percentage/ $\%$				
cultivation)	子叶	下胚轴	叶片		
/d	cotyledons	hypocotyls	leaves		
0	0.0	3. 2	0.0		
1	26.7	36. 7	16. 7		
2	40.0	46. 7	23. 2		
3	50.0	60. 0	30.0		
4	56.7	70. 0	40.0		

共培养时间也是影响转化的重要因素之一.农杆菌 T-DNA 在植物体的转移和整合需要一段时间,故外植体在浸菌后,还需在无抗生素的分化培养基上共培养一段时间.若共培养时间不够,T-DNA 转移和整合未能完成,转化就不能实现;若共培养时间过长,农杆菌生长过度,对外植体的毒害加深,亦不利于转化.本试验中采用了不同的共培养时间为 0.2、3、4、5 d,发现当共培养 4 d 后,可见伤口处有极小的农杆菌菌落,立即转到脱菌培养基中进行脱菌处理,可获得较高频率的抗性芽,故在转化中,采用共培养 4 d 为宜. 结果见表 3.

表3 不同共培养时间对外植体分化抗性芽的影响

Tab. 3 Effects of co-culture time on the resistant buds differentiation frequencies in explants of mustard

	抗性芽分化频率 the differentiation frequencies of the resistant buds/ %					
cultivation) / d	子叶 cotyledons	下胚轴 hypocotyls	叶片 leaves			
0	0.0	0.0	0.0			
2	0.0	0.0	0.0			
3	1. 0	2 5	0.6			
4	3. 5	7. 5	2 8			
5	3. 0	5. 0	1. 5			

2.4 转化植株的筛选及鉴定

(1)转化植株的筛选:通过对上述的因素进行分析,初步建立了芥菜的遗传转化体系.按照该体系进行转化,即外植体预培养 3~4 d 后,在 D600 mm 为 0.5 的农杆菌菌液中浸泡 10 min,再共培养 4 d,转入含有25 mg/L 的,Kan 和 500 mg/L Carb 筛选培养基上进行

多代筛选, 15 d 后, 部分外植体开始膨大, 形成绿色的愈伤组织, 约 20 d 后, 少数愈伤组织分化出绿芽. 经过多代筛选, 一部分假转化体白化死亡, 仍保持绿色的外植体确定为转化不定芽, 见图 2, 将转化不定芽转到生根培养基中生根, 而后移栽到蛭石中. 在对下胚轴, 叶片和子叶进行转化后发现, 下胚轴的转化频率要高于子叶, 叶片. 下胚轴的转化率为 10%左右, 而子叶, 叶片全部死亡, 表明不同的外植体对转化效果影响亦很大.

图 2 具有抗 Kan 的转化不定芽在选择培养基上

Fig. 2 Kanamycin resistant transformed bud of mustard on selective medium

(2)转基因茎瘤芥的PCR 鉴定: 提取转化植株的 总 DNA, 进行 PCR 扩增, 转化植株及 质粒 pBI-TuR2 (阳性对照)均扩增出目的带, 而未转植株则未扩增 出任何带, 初步表明目的基因已转到芥菜中, 见图 3.

- 1; Marker; 2-5; 转化植株; 6; 阴性对照(未转植株);
- 7-9: 阳性对照(pBI-TuR2)
- 1; Marker; 2-5; transformed plant; 6; blank control (not transformed plant); 7-9; positive control (pBI-TuR2)

图 3 转化植株的 PCR 检测

Fig. 3 PCR detection of transformed plant

3 讨论

自首例转基因植物诞生以来,植物基因工程发展迅速,迄今为止,已建立了多种方法和系统,分别适用于不同植物的转化^[1,9].农杆菌介导的遗传转,化法是目前研究得最多,机理较清楚,技术和方法较

成熟,并广泛使用最多的一种方法[1,4],它是双子叶 植物较理想的转化方法,目前获得转化成功的事例 中有80%采用此法. 而国内外有关芥菜遗传转化的 研究报道不多,因此本试验亦采用此方法进行芥菜 的遗传转化研究, 以期建立芥菜农杆菌高效遗传转 化体系. 研究者们在采用此方法时, 对所用外植体的 来源,生理状态,感菌时间,共培养时间以及所用抗 生素种类和浓度, 筛选剂的浓度及加入时间等因素 对转化效果的影响均进行了研究[2],但是没有一个 通用的遗传转化体系,针对不同的材料,仍需探讨不 同的转化体系, 在本试验中, 探讨了以上诸多因素对 芥菜转化效率的影响, 初步建立了芥菜农杆菌高效 遗传转化体系,为以后开展芥菜的遗传转化奠定了 基础. 本试验中,采用共培养 4 d, Kan 质量浓度为 25 mg/L 作筛选压,得到较高的转化率,这与张七仙 等^[5] 在甘蓝上采用共培养 2 d, 50 mg/L 的 Kan 筛选 压有所不同,这可能是由于所用转化材料不同的缘 故. 另外农杆菌转化十字花科作物时,有关乙酰丁香 酮能够提高转化效率的作用, 仍存在争议, Christey 等^{7]}认为可以提高转化率,而张七仙等^[3]认为没有, 本试验中没有进行该方面的研究, 故有关这方面的 研究有待继续探讨. 采用茎瘤芥的下胚轴, 叶片和子 叶作外植体进行遗传转化,结果表明下胚轴的转化 率达到了10%左右,而子叶,叶片没有得到转化植 株,这与大多数研究者所得结果相似[5~8],即采用下 胚轴作外植体来转化,可以得到较高转化效率.

参考文献:

- [1] 林忠平. 走向 21 世纪的植物分子生物学[M]. 北京: 科学出版社, 2000. 446-453.
- [2] 李子银,胡会庆. 农杆菌介导的植物遗传转化进展[J]. 生物工程进展,1998,18(1):22-26.
- [3] DONG J Z. MEHUGHEN A. An improved procedure for production of transgenic flax plants using Agrobacterium tumefaciens [J]. Plant Sci, 1993, 88: 61-67.
- [4] 曹家树, 余小林. 提高白菜离体培养植株再生频率的影响 』. 园艺学报, 2000, 27(6); 452—454.
- [5] 张七仙,敖光明. 根癌农杆菌介导的甘蓝高效稳定的遗传转化系统建立及对 CpTI 基因转化的研究[J]. 农业生物技术学报,2001,9(1):72-76.
- [6] BERTHOMICU P, JOUANIN L. Transformation of rapid cyding cabbage (*Brassica oleracea* var. *capitata*) with *Agrobacterium thizogenes* [J]. Plant Cell Report, 1992, 11: 334— 338
- [7] CHRISTEEY M C. SINCLAIR B K. Regeneration of transgenic kale (*Brassica oleracea* var. acephala), rape (B. napus) and tumip (B. compertis var. rapifera) via Agrobacterium thizogenes mediated transformation [J]. Plant Sci. 1992, 87: 161—169.
- [8] 李学宝,郑世学. 甘蓝型油菜抗虫转基因植株及其抗性分析[J]. 遗传学报, 1999, 26(3): 262-268.
- [9] YAO J L. COHEN D. ATKINSON R. Regeneration of transgenic plants from the commercial apple cultivar Royal gal at J. Plant Cell Reports. 1995, 14: 407—412.

Initial Establishment of Efficient and Stable Mustard Transgenic System Mediated with *Agrobacterium tumefacciens*

CAO Bi-hao¹, LEI Jian-jun¹, SONG Hong-yuan², QIN Yao-guo¹
(1 Horticulture Biotechnology Research Institute, South China
Agric, Univ., Guangzhou 510642, China; 2 Department of Horticulture,
South-West Agric, Univ., Chongqing 400716, China)

Abstract: An efficient and stable mustard transgenic system mediated with *Agrobacterium tumefacciens* was established initially, through the exploration of the factors affecting *Agrobacterium tumefacciens* transformation mustard in the experiment and optimization parameter. The optimum regeneration medium is the medium of MS being contained 6-BA (2.0 mg/L) and NAA (0.2 mg/L); After the mustard explants were pre-cultured on the regeneration medium for 3 or 4 days, they were inoculated with 0.5 of $D_{600 \text{ nm}}$ *Agrobacterium tumefacciens* for 10 minutes. Inoculated explants were co-cultured for 4 days, then transferred to the same medium plus 25 mg/L kanamycin and 500 mg/L carbenicillin. The efficiency of transformation was high.

Key words: mustard; transformation; Agrobacterium tumefacciens

【责任编辑 柴 焰】