比格犬神经垂体存在内分泌样细胞

李玉谷1,张 媛1,程树军2,黄 韧2,孔小明1,王平利1

(1 华南 农业大学 兽医学院, 广东 广州 510642; 2 广东省实验动物监测所, 广东 广州 510260)

摘要:透射电镜观察表明,比格犬(Beagle)神经垂体内除含大量的无髓神经纤维、神经纤维膨体(赫令小体)、神经胶质细胞和血窦外,还可分辨出少量的肥大细胞和内分泌样细胞.内分泌样细胞的主要特征是:胞质内含有大量高电子密度的小分泌颗粒,颗粒呈圆形,表面有膜包裹,直径约109~213 nm,主要分布于一侧胞质内.

关键词: 内分泌样细胞;超微结构;神经垂体;比格犬中图分类号: 0954.6 文献标识码: A

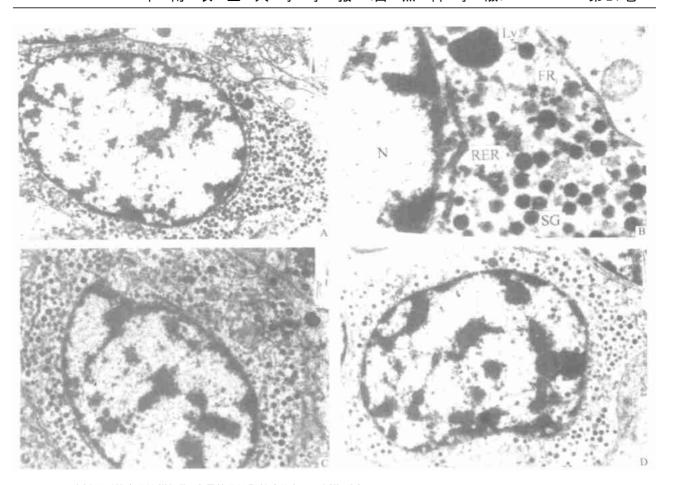
在以往的研究中,均描述神经垂体的组织结构与腺垂体截然不同,其内不含特定的内分泌细胞;同时,也与下丘脑不同,其内不含分泌性神经元(神经内分泌细胞),而由大量的无髓神经纤维、神经胶质细胞和血窦等构成 ^{1~3}.本研究应用透射电镜,在实验动物比格犬神经垂体内发现一类胞质内含有大量小分泌颗粒的细胞,作者认为这类细胞很可能属于特定的内分泌细胞或神经内分泌细胞.这一研究结果使内分泌细胞的分布扩展到神经垂体,并为深入研究神经垂体的内分泌功能奠定了形态学基础,在组织学、内分泌生理学和神经内分泌学上具有重要的理论意义.

1 材料与方法

3~6月龄健康比格犬麻醉后颈动脉放血致死,立即取出脑垂体,分离出神经垂体,取其远端(即神经部)切成1 mm³的小块,经0.1 mol/L 磷酸缓冲液(pH7.2)配制的40 mL/L 戊二醛和10 g/L 锇酸双重固定,乙醇逐级脱水,环氧丙烷过渡,Epon812 环氧树脂包埋,超薄切片,醋酸双氧铀和柠檬酸铅双重染色,Philips-400型透射电子显微镜观察和摄影.同时,还取部分神经垂体制成石蜡切片,常规H-E染色,光镜观察.

2 结果

比格犬的脑垂体分为腺垂体和神经垂体 2 部分,肉眼观察,新鲜的腺垂体为淡红色,而神经垂体呈灰白色,二者差别明显;而且 3~6 月龄的比格犬的神经垂体远端(神经部)与腺垂体之间尚未形成实质性的结合,很容易采用机械方法将其分离.光镜


文章编号: 1001-411X (2003) 04-0113-03

下,神经垂体含有大量的无髓神经纤维、神经胶质细胞(垂体细胞)和血窦,还可见神经垂体的特征性结构——赫令小体(Herring body). 电镜下,比格犬神经垂体内除含大量的无髓神经纤维、神经纤维膨体(即光镜下的赫令小体)、神经胶质细胞和血窦外,还可分辨出少量的肥大细胞和内分泌样细胞.

内分泌样细胞单个散在分布,与相邻细胞之间未见典型的连接结构;胞体呈圆形、椭圆形、卵圆形或星形,直径约15 μ m,有的可见突起;胞核大,圆形或椭圆形,位于中央或略偏于一侧,常染色质较丰富,并有较多的呈块状的异染色质贴附于核膜下或散于核内;胞质内含有较丰富的游离核糖体,中等数量的线粒体,少量的粗面内质网和溶酶体等,高尔基复合体不发达.其主要特征是,胞质内含有大量的小分泌颗粒,颗粒呈圆形,表面有膜包裹,直径约109~213 nm,可见于整个胞质,但主要分布于一侧胞质内,而另一侧数量较少;多数颗粒的内容物呈高电子密度的均质状,少数为中等电子密度的细粒状(图1—A~D).

3 讨论

关于神经垂体的组织结构,长期以来认为它由来自下丘脑视上核和室旁核的无髓神经纤维、特化的神经胶质细胞(垂体细胞)和血窦等组成.视上核和室旁核内含有许多分泌性神经元,其轴突伸入神经垂体内构成该部的无髓神经纤维;含催产素和加压素等激素的分泌颗粒沿着轴突内的微管运输,进入神经垂体并储存于赫令小体内,然后这些激素释放于附近的毛细血管内.而神经垂体本身并不能产生激素,仅仅是运输、储存和释放下丘脑催产素和加

- A 示一个椭圆形的内分泌样细胞,大量的分泌颗粒多分布于一侧胞质内. 6 450×
- B 图 A 局部放大. SG: 分泌颗粒; RER: 粗面内质网; FR: 游离核糖体; Ly: 溶酶体; N: 细胞核. 23 000×
- € 示一个卵圆形的内分泌样细胞 胞质内含有较多的分泌颗粒和细胞器. 8 350×
- D 示一个星形的内分泌样细胞,较多的分泌颗粒多分布于一侧胞质内. 8 350×
- A Showing an elliptic endocrine-like cell, numerous secretory granules mostly situated in one side of the cytoplasm. 6 $450 \times$
- B Enlargement of a part of Fig A. SG; secretory granules; RER; rough endoplasmic reticulum; FR; free ribosome; Ly; lysosome; N; nucleus. 23 000×
- C Showing an ovoid endocrine-like cell, containing many secretory granules and organelles in its cytoplasm. 8 350×
- D Showing a stellate endocrine-like cell, many secretory granules mostly situated in one side of the cytoplasm. 8 350×

图 1 比格犬神经垂体的内分泌样细胞

Fig. 1 Endocrine-like cells in the neurohypophysis of Beagle

压素等激素的场所;同时也未见神经垂体内存在特定的内分泌细胞或神经内分泌细胞的记载^{1~5]}.虽然 Takey 等^{6]} 曾在人神经垂体中观察到一种"颗粒型垂体细胞",但其所含的"颗粒"是次级溶酶体,并非分泌颗粒;杨惠彬等^{7]} 曾在大鼠神经垂体中观察到一种"分泌型垂体细胞",但其所含的分泌颗粒较少,呈散开分布.杨世华等^[8] 在牦牛的神经垂体内,观察到"小颗粒垂体细胞"和"大颗粒垂体细胞".其中,"小颗粒垂体细胞"的胞质中有均匀分布的电子密度高的圆形分泌颗粒,直径约250~400 nm;"大颗粒垂体细胞"胞浆内有直径达1700 nm 的大分泌颗粒,本文作者认为此种细胞很可能是肥大细胞.而本实验在比格犬神经垂体内观察到的上述细胞,其"分泌颗粒"显然不是次级溶酶体,而十分类似于内分泌细胞

的分泌颗粒,故有别于上述"颗粒型垂体细胞";而且从其分泌颗粒数量多、体积小、多数电子密度高、分布于一侧胞质内等特点来看,似乎这类细胞也有别于上述"分泌型垂体细胞"和"小颗粒垂体细胞",却更像是神经内分泌细胞⁹.因此,作者认为此种细胞很可能属于特定的内分泌细胞或神经内分泌细胞。至于其确切功能,即它们分泌何种激素或细胞因子则有待于今后深入研究.

参考文献:

- [1] 沈霞芬. 家畜组织学与胚胎学[M]. 第3版. 北京:中国农业出版社,2001,127—140.
- [2] 成令忠. 组织学与胚胎学[M]. 第4版. 北京:人民卫生shing Hu版社. 1996: 144—156. shing House: All rights reserved. http://www.cnki.net

- [3] 傅伟龙, 江青艳, 高 萍, 等. 动物生理学[M]. 北京: 中国农业科技出版社, 2001. 222—225.
- [4] TAKEY Y, PEARL G S. Ultrastructure of the human neurohypophysis J. Cell Tissue Res 1984, 235; 77—88.
- [5] SENDA Y W. Kinesin cross-bridges between neurosecretory granules and microtubules in the mouse neurohypophysis [J]. Neurosci Let 1999, 262(1): 69-71.
- [6] TAKEY Y. Ultrastructural study of the human neurohypophysis

- cellular elements of neural parenchyma; the pituicytes [J]. Cell Tissue Res. 1980, 205; 237.
- [7] 杨惠彬, 王之贤, 祝品金. 成年大鼠神经垂体垂体细胞超微结构观察[J]. 解剖学报, 1989, 20(3): 319—322.
- [8] 杨世华,崔 燕,王 双,等. 牦牛垂体神经部的组织结构特征[J]. 中国兽医科技, 2002, 32(5): 10-13.
- [9] 刘 斌. 弥散神经内分泌系统[A]. 成令忠. 组织学[C]. 第2版. 北京: 人民卫生出版社, 1993. 808—828.

Endocrine-Like Cells Occur in the Neurohypophysis of Beagle

LI Yu-gu¹, ZHANG Yuan¹, CHENG Shu-jun², HUANG Ren², KONG Xiao-ming¹, WANG Ping-li¹
(1 College of Veterinary Medicine, South China Agric. Univ., Guangzhou 510642, China;
2 Guangdong Province Laboratory Animals Monitoring Institute, Guangzhou 510260, China)

Abstract: Under transmission electron microscope, it was observed that the neurohypophysis of the Beagle had a few mast cells and endocrine-like cells besides a lot of non-medullated fibers, Herring bodies, glial cells and sinusoids. The endocrine-like cells contained numerous secretory granules which were small, round, membrane-bounded, highly electrondense, about 109 ~213 nm in diameter, and mainly occurred in one side of the cytoplasm.

Key words: endocrine-like cells; ultrastructure; neurohypophysis; Beægle

【责任编辑 柴 焰】

Journal of South China Agricultural University (Natural Science Edition)

Sponsored by South China Agricultural University, Journal of South China Agricultural University ty (Natural Science Edition) publishes a wide range of papers in Agricultural Sciences. It is one of China's core journals in comprehensive agricultural sciences and in agricultural plant protection. It has been awarded the national and provincial titles for the best journal. It is abstracted and indexed in more than 30 digest journals and databases. The journal mainly publishes the scientific and technical achievements of various fields and disciplines of the university under the following columns: **Agronomy** (covering mainly crop culture and geoponics, crop genetics and breeding, pomology, olericulture, agricultural produce storage and processing, fruit and vegetable storage and processing, tea science, sericulture, soil science, crop nutrition and fertilization, agricultural environment protection, land planning and utilization, silviculture, and forest management); Plant Protection (covering mainly plant pest control and research); Biology (covering mainly botany, plant physiology, entomology, biochemistry ecology, biophysics, and molecular biology); Animal Science and Veterinary Medicine (covering mainly husbandry and veterinary medicine); Agricultural Engineering and Food Science (covering mainly agricultural mechanization, agricultural systematic engineering and management engineering, agricultural machinery design and manufacture, wood science and engineering, landscape planning and design, food science); Basic Science (covering mainly mathematics, physics, chemistry and computer science); Reviews and Short Communication.